Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2006, Volume 17, Pages 11–28 (Mi cmfd54)  

This article is cited in 4 scientific papers (total in 4 papers)

Nonlinear and linear instability of the Rossby–Haurwitz wave

Yu. N. Skiba

National Autonomous University of Mexico
Full-text PDF (691 kB) Citations (4)
References:
Abstract: The dynamics of perturbations to the Rossby–Haurwitz (RH) wave is analytically analyzed. These waves, being of great meteorological importance, are exact solutions to the nonlinear vorticity equation describing the motion of an ideal incompressible fluid on a rotating sphere. Each RH wave belongs to a space $H_1\oplus H_n$, where $H_n$ is the subspace of homogeneous spherical polynomials of degree $n$. It is shown that any perturbation of the RH wave evolves in such a way that its energy $K(t)$ and enstrophy $\eta(t)$ decrease, remain constant, or increase simultaneously. A geometric interpretation of variations in the perturbation energy is given. A conservation law for arbitrary perturbations is obtained and used to classify all the RH-wave perturbations in four invariant sets $M_{-}^n$, $M_{+}^n$, $H_n$, and $M_0^n-H_n$, depending on the value of their mean spectral number $\chi(t)=\eta(t)/K(t)$. The energy cascade of growing (or decaying) perturbations has opposite directions in the sets $M_{-}^n$ and $M_{+}^n$ due to a hyperbolic dependence between $K(t)$ and $\chi(t)$. A factor space with a factor norm of the perturbations is introduced, using the invariant subspace $H_n$ of neutral perturbations as the zero factor class. While the energy norm controls the perturbation part belonging to $H_n$, the factor norm controls the perturbation part orthogonal to $H_n$. It is shown that in the set $M_{-}^n$ ($\chi(t)<n(n+1)$), any nonzonal RH wave of subspace $H_1\oplus H_n$ ($n\ge 2$) is Liapunov unstable in the energy norm. This instability has nothing in common with the orbital (Poincaré) instability and is caused by asynchronous oscillations of two almost coinciding RH-wave solutions. It is also shown that the exponential instability is possible only in the invariant set $M_{0}^n-H_n$. A necessary condition for this instability is given. The condition states that the spectral number $\chi(t)$ of the amplitude of each unstable mode must be equal to $n(n+1)$, where $n$ is the RH wave degree. The growth rate is estimated and the orthogonality of the unstable normal modes to the RH wave are shown in two Hilbert spaces. The instability in the invariant set $M_{+}^n$ of small-scale perturbations ($\chi(t)>n(n+1)$) is still an open problem.
English version:
Journal of Mathematical Sciences, 2008, Volume 149, Issue 6, Pages 1708–1725
DOI: https://doi.org/10.1007/s10958-008-0091-3
Bibliographic databases:
UDC: 517.956.3
Language: Russian
Citation: Yu. N. Skiba, “Nonlinear and linear instability of the Rossby–Haurwitz wave”, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 3, CMFD, 17, PFUR, M., 2006, 11–28; Journal of Mathematical Sciences, 149:6 (2008), 1708–1725
Citation in format AMSBIB
\Bibitem{Ski06}
\by Yu.~N.~Skiba
\paper Nonlinear and linear instability of the Rossby--Haurwitz wave
\inbook Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14--21, 2005). Part~3
\serial CMFD
\yr 2006
\vol 17
\pages 11--28
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd54}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2336456}
\elib{https://elibrary.ru/item.asp?id=14422948}
\transl
\jour Journal of Mathematical Sciences
\yr 2008
\vol 149
\issue 6
\pages 1708--1725
\crossref{https://doi.org/10.1007/s10958-008-0091-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-40549115947}
Linking options:
  • https://www.mathnet.ru/eng/cmfd54
  • https://www.mathnet.ru/eng/cmfd/v17/p11
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:365
    Full-text PDF :117
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024