Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2024, Volume 70, Issue 1, Pages 99–120
DOI: https://doi.org/10.22363/2413-3639-2024-70-1-99-120
(Mi cmfd531)
 

Coercive estimates for multilayer degenerate differential operators

H. G. Kazaryanab

a Institute of Mathematics, National Academy of Sciences of Armenia, Yerevan, Armenia
b Russian-Armenian University, Yerevan, Armenia
References:
Abstract: We obtain the conditions under which a given multilayer differential operator $P(D)$ (polynomial $P(\xi)$) is more powerful than operator $Q(D)$ (polynomial $Q(\xi)$). This is used to obtain estimates of monomials, which, in turn, using the theory of Fourier multipliers, is used to obtain coercive estimates of derivatives of functions through the differential operator $P(D)$ applied to these functions.
Keywords: coercive estimate, comparison of power of differential operators (polynomials), lower-order term of differential operator (polynomial), Newton polyhedron, degenerate (nondegenerate) operator (polynomial), multilayer operator (polynomial).
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: H. G. Kazaryan, “Coercive estimates for multilayer degenerate differential operators”, Functional spaces. Differential operators. Problems of mathematics education, CMFD, 70, no. 1, PFUR, M., 2024, 99–120
Citation in format AMSBIB
\Bibitem{Kaz24}
\by H.~G.~Kazaryan
\paper Coercive estimates for multilayer degenerate differential operators
\inbook Functional spaces. Differential operators. Problems of mathematics education
\serial CMFD
\yr 2024
\vol 70
\issue 1
\pages 99--120
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd531}
\crossref{https://doi.org/10.22363/2413-3639-2024-70-1-99-120}
\edn{https://elibrary.ru/YUEIWO}
Linking options:
  • https://www.mathnet.ru/eng/cmfd531
  • https://www.mathnet.ru/eng/cmfd/v70/i1/p99
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:39
    Full-text PDF :11
    References:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024