Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2023, Volume 69, Issue 4, Pages 621–642
DOI: https://doi.org/10.22363/2413-3639-2023-69-4-621-642
(Mi cmfd518)
 

The existence problem of feedback control for one fractional Voigt model

A. V. Zvyagin, E. I. Kostenko

Voronezh State University, Voronezh, Russia
References:
Abstract: In this paper, we study the feedback control problem for a mathematical model that describes the motion of a viscoelastic fluid with memory along velocity field trajectories. We prove the existence of an optimal control that gives a minimum to a given bounded and semi-continuous from below quality functional. The proof uses the approximation-topological approach, the theory of regular Lagrangian flows, and the theory of topological degree for multivalued vector fields.
Keywords: fractional Voigt model, viscoelastic fluid, motion with memory, optimal control, approximation-topological approach, regular Lagrangian flow, topological degree, multivalued vector field.
Funding agency
The research was supported by the Russian Science Foundation, grant № 23-71-10026, https://rscf.ru/project/23-71-10026/.
Bibliographic databases:
Document Type: Article
UDC: 517.977.5
Language: Russian
Citation: A. V. Zvyagin, E. I. Kostenko, “The existence problem of feedback control for one fractional Voigt model”, CMFD, 69, no. 4, PFUR, M., 2023, 621–642
Citation in format AMSBIB
\Bibitem{ZvyKos23}
\by A.~V.~Zvyagin, E.~I.~Kostenko
\paper The existence problem of feedback control for one fractional Voigt model
\serial CMFD
\yr 2023
\vol 69
\issue 4
\pages 621--642
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd518}
\crossref{https://doi.org/10.22363/2413-3639-2023-69-4-621-642}
\edn{https://elibrary.ru/YRJVVX}
Linking options:
  • https://www.mathnet.ru/eng/cmfd518
  • https://www.mathnet.ru/eng/cmfd/v69/i4/p621
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025