Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2023, Volume 69, Issue 4, Pages 588–598
DOI: https://doi.org/10.22363/2413-3639-2023-69-4-588-598
(Mi cmfd516)
 

Exponential stability of the flow for a generalized Burgers equation on a circle

A. Djurdjevaca, A. R. Shirikyanbc

a Freie Universität Berlin, Berlin, Germany
b CY Cergy Paris University, Cergy–Pontoise, France
c RUDN University, Moscow, Russia
References:
Abstract: The paper deals with the problem of stability for the flow of the $\mathrm{1D}$ Burgers equation on a circle. Using some ideas from the theory of positivity preserving semigroups, we establish the strong contraction in the $L^1$ norm. As a consequence, it is proved that the equation with a bounded external force possesses a unique bounded solution on $\mathbb{R}$, which is exponentially stable in $H^1$ as $t\to+\infty$. In the case of a random external force, we show that the difference between two trajectories goes to zero with probability $1$.
Keywords: Burgers equation, exponential stability, bounded trajectory.
Funding agency Grant number
Deutsche Forschungsgemeinschaft CRC 1114, № 235221301
Agence Nationale de la Recherche ANR-16-IDEX-0008
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-1115
The research of the first author has been partially supported by Deutsche Forschungsgemeinschaft (DFG) through grant CRC 1114 Scaling Cascades in Complex Systems, Project Number 235221301, Project C10 — Numerical analysis for nonlinear SPDE models of particle systems. The research of the second author has been supported by the CY Initiative through the grant Investissements d’Avenir ANR-16-IDEX-0008 and by the Ministry of Science and Higher Education of the Russian Federation (Megagrant, agreement No. 075-15-2022-1115).
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: A. Djurdjevac, A. R. Shirikyan, “Exponential stability of the flow for a generalized Burgers equation on a circle”, CMFD, 69, no. 4, PFUR, M., 2023, 588–598
Citation in format AMSBIB
\Bibitem{DjuShi23}
\by A.~Djurdjevac, A.~R.~Shirikyan
\paper Exponential stability of the flow for~a~generalized Burgers equation on~a~circle
\serial CMFD
\yr 2023
\vol 69
\issue 4
\pages 588--598
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd516}
\crossref{https://doi.org/10.22363/2413-3639-2023-69-4-588-598}
\edn{https://elibrary.ru/YFDPHA}
Linking options:
  • https://www.mathnet.ru/eng/cmfd516
  • https://www.mathnet.ru/eng/cmfd/v69/i4/p588
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025