Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2023, Volume 69, Issue 4, Pages 578–587
DOI: https://doi.org/10.22363/2413-3639-2023-69-4-578-587
(Mi cmfd515)
 

Stationary states in population dynamics with migration and distributed offspring

A. A. Davydova, Kh. A. Khachatryanba

a Lomonosov Moscow State University, Moscow, Russia
b Yerevan State University, Yerevan, Armenia
References:
Abstract: For an integral equation whose solutions provide stationary states of a population distributed in an arithmetic space, we find the conditions for the existence of its solution and conditions under which this equation has no more than one solution.
Keywords: population dynamics, stationary state, migration, distributed offspring, integral equation.
Funding agency Grant number
Russian Science Foundation 19-11-00223
The research was supported by the Russian Science Foundation (project No. 19-11-00223).
Bibliographic databases:
Document Type: Article
UDC: 517.968.4
Language: Russian
Citation: A. A. Davydov, Kh. A. Khachatryan, “Stationary states in population dynamics with migration and distributed offspring”, CMFD, 69, no. 4, PFUR, M., 2023, 578–587
Citation in format AMSBIB
\Bibitem{DavKha23}
\by A.~A.~Davydov, Kh.~A.~Khachatryan
\paper Stationary states in population dynamics with migration and distributed offspring
\serial CMFD
\yr 2023
\vol 69
\issue 4
\pages 578--587
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd515}
\crossref{https://doi.org/10.22363/2413-3639-2023-69-4-578-587}
\edn{https://elibrary.ru/WVMHMR}
Linking options:
  • https://www.mathnet.ru/eng/cmfd515
  • https://www.mathnet.ru/eng/cmfd/v69/i4/p578
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025