Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2023, Volume 69, Issue 3, Pages 399–417
DOI: https://doi.org/10.22363/2413-3639-2023-69-3-399-417
(Mi cmfd510)
 

Smoothness of generalized solutions of a boundary-value problem for a second-order differential-difference equation with mixed boundary conditions

N. O. Ivanov

RUDN University, Moscow, Russia
References:
Abstract: We consider a boundary-value problem with mixed boundary conditions for a second-order differential-difference equation on a finite interval $(0,d).$ We prove existence of a generalized solution of the problem and study the conditions on the right-hand side of the differential-difference equation ensuring the smoothness of the generalized solution over the entire interval.
Keywords: boundary-value problem, differential-difference equations, generalized solutions.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-1115
This work was supported by the Ministry of Science and Higher Education of the Russian Federation (Megagrant, agreement No. 075-15-2022-1115).
Bibliographic databases:
Document Type: Article
UDC: 517.929
Language: Russian
Citation: N. O. Ivanov, “Smoothness of generalized solutions of a boundary-value problem for a second-order differential-difference equation with mixed boundary conditions”, CMFD, 69, no. 3, PFUR, M., 2023, 399–417
Citation in format AMSBIB
\Bibitem{Iva23}
\by N.~O.~Ivanov
\paper Smoothness of generalized solutions of a boundary-value problem for a second-order differential-difference equation with mixed boundary conditions
\serial CMFD
\yr 2023
\vol 69
\issue 3
\pages 399--417
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd510}
\crossref{https://doi.org/10.22363/2413-3639-2023-69-3-399-417}
\edn{https://elibrary.ru/DXHBXR}
Linking options:
  • https://www.mathnet.ru/eng/cmfd510
  • https://www.mathnet.ru/eng/cmfd/v69/i3/p399
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025