Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2023, Volume 69, Issue 1, Pages 134–151
DOI: https://doi.org/10.22363/2413-3639-2023-69-1-134-151
(Mi cmfd492)
 

$L^2$-estimates of error in homogenization of parabolic equations with correctors taken into account

S. E. Pastukhova

MIREA — Russian Technological University, Moscow, Russia
References:
Abstract: We consider second-order parabolic equations with bounded measurable $\varepsilon$-periodic coefficients. To solve the Cauchy problem in the layer $\mathbb{R}^d\times(0,T)$ with the nonhomogeneous equation, we obtain approximations in the norm $\|\cdot\|_{L^2(\mathbb{R}^d\times(0,T))}$ with remainder of order $\varepsilon^2$ as $\varepsilon\to 0.$
Keywords: parabolic equations, homogenization of solutions, homogenization error, corrector.
Bibliographic databases:
Document Type: Article
UDC: 517.97
Language: Russian
Citation: S. E. Pastukhova, “$L^2$-estimates of error in homogenization of parabolic equations with correctors taken into account”, CMFD, 69, no. 1, PFUR, M., 2023, 134–151
Citation in format AMSBIB
\Bibitem{Pas23}
\by S.~E.~Pastukhova
\paper $L^2$-estimates of error in homogenization of parabolic equations with correctors taken into account
\serial CMFD
\yr 2023
\vol 69
\issue 1
\pages 134--151
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd492}
\crossref{https://doi.org/10.22363/2413-3639-2023-69-1-134-151}
\edn{https://elibrary.ru/FNYJWO}
Linking options:
  • https://www.mathnet.ru/eng/cmfd492
  • https://www.mathnet.ru/eng/cmfd/v69/i1/p134
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025