Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2023, Volume 69, Issue 1, Pages 98–115
DOI: https://doi.org/10.22363/2413-3639-2023-69-1-98-115
(Mi cmfd490)
 

Entropy and renormalized solutions for a nonlinear elliptic problem in Musielak–Orlicz spaces

L. M. Kozhevnikovaab

a Sterlitamak Branch of Bashkir State University, Sterlitamak, Russia
b Elabuga Institute of Kazan Federal University, Elabuga, Russia
References:
Abstract: In this paper, we establish the equivalence of entropy and renormalized solutions of second-order elliptic equations with nonlinearities defined by the Musielak–Orlicz functions and the right-hand side from the space $L_1(\Omega).$ In nonreflexive Musielak—Orlicz—Sobolev spaces, we prove the existence and uniqueness of both entropy and renormalized solutions of the Dirichlet problem in domains with a Lipschitz boundary.
Keywords: second-order elliptic equation, entropy solution, renormalized solution, Musielak–Orlicz–Sobolev space, existence and uniqueness of solutions.
Bibliographic databases:
Document Type: Article
UDC: 517.956.25
Language: Russian
Citation: L. M. Kozhevnikova, “Entropy and renormalized solutions for a nonlinear elliptic problem in Musielak–Orlicz spaces”, CMFD, 69, no. 1, PFUR, M., 2023, 98–115
Citation in format AMSBIB
\Bibitem{Koz23}
\by L.~M.~Kozhevnikova
\paper Entropy and renormalized solutions for a nonlinear elliptic problem in Musielak--Orlicz spaces
\serial CMFD
\yr 2023
\vol 69
\issue 1
\pages 98--115
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd490}
\crossref{https://doi.org/10.22363/2413-3639-2023-69-1-98-115}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4573459}
\edn{https://elibrary.ru/EBRPUC}
Linking options:
  • https://www.mathnet.ru/eng/cmfd490
  • https://www.mathnet.ru/eng/cmfd/v69/i1/p98
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñîâðåìåííàÿ ìàòåìàòèêà. Ôóíäàìåíòàëüíûå íàïðàâëåíèÿ
    Statistics & downloads:
    Abstract page:75
    Full-text PDF :42
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024