Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2023, Volume 69, Issue 1, Pages 32–49
DOI: https://doi.org/10.22363/2413-3639-2023-69-1-32-49
(Mi cmfd486)
 

This article is cited in 1 scientific paper (total in 1 paper)

The second-order accuracy difference schemes for integral-type time-nonlocal parabolic problems

A. Ashyralyevabc, Ch. Ashyralyyevdb

a Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
b Bahcesehir University, Istanbul, Turkey
c RUDN University, Moscow, Russia
d National University of Uzbekistan Named After Mirzo Ulugbek, Tashkent, Uzbekistan
Full-text PDF (324 kB) Citations (1)
References:
Abstract: This is a discussion on the second-order accuracy difference schemes for approximate solution of the integral-type time-nonlocal parabolic problems. The theorems on the stability of r-modified Crank–Nicolson difference schemes and second-order accuracy implicit difference scheme for approximate solution of the integral-type time-nonlocal parabolic problems in a Hilbert space with self-adjoint positive definite operator are established. In practice, stability estimates for the solutions of the second-order accuracy in $t$ difference schemes for the one and multidimensional time-nonlocal parabolic problems are obtained. Numerical results are given.
Keywords: nonlocal parabolic problem, second-order accuracy difference scheme, Crank–Nicolson scheme, implicit difference scheme, stability.
Bibliographic databases:
Document Type: Article
UDC: 517.9+519.63
Language: Russian
Citation: A. Ashyralyev, Ch. Ashyralyyev, “The second-order accuracy difference schemes for integral-type time-nonlocal parabolic problems”, CMFD, 69, no. 1, PFUR, M., 2023, 32–49
Citation in format AMSBIB
\Bibitem{AshAsh23}
\by A.~Ashyralyev, Ch.~Ashyralyyev
\paper The second-order accuracy difference schemes for integral-type time-nonlocal parabolic problems
\serial CMFD
\yr 2023
\vol 69
\issue 1
\pages 32--49
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd486}
\crossref{https://doi.org/10.22363/2413-3639-2023-69-1-32-49}
\edn{https://elibrary.ru/ENHOAY}
Linking options:
  • https://www.mathnet.ru/eng/cmfd486
  • https://www.mathnet.ru/eng/cmfd/v69/i1/p32
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:70
    Full-text PDF :47
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025