Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2022, Volume 68, Issue 4, Pages 716–731
DOI: https://doi.org/10.22363/2413-3639-2022-68-4-716-731
(Mi cmfd483)
 

Existence of solution of a free boundary problem for reaction-diffusion systems

G. A. Younesab, N. El Khatibc, V. A. Volpertd

a Institut Camille Jordan, Villeurbanne, France
b University Lyon 1, Villeurbanne, France
c Lebanese American University, Byblos, Lebanon
d Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
References:
Abstract: In this paper, we prove the existence of solution of a novel free boundary problem for reaction-diffusion systems describing growth of biological tissues due to cell influx and proliferation. For this aim, we transform it into a problem with fixed boundary, through a change of variables. The new problem thus obtained has space and time dependent coefficients with nonlinear terms. We then prove the existence of solution for the corresponding linear problem, and deduce the existence of solution for the nonlinear problem using the fixed point theorem. Finally, we return to the problem with free boundary to conclude the existence of its solution.
Keywords: free boundary problem, reaction-diffusion system, growth of biological tissues, existence of solution.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-1115
Document Type: Article
UDC: 517.956.4+517.958
Language: Russian
Citation: G. A. Younes, N. El Khatib, V. A. Volpert, “Existence of solution of a free boundary problem for reaction-diffusion systems”, Differential and functional differential equations, CMFD, 68, no. 4, PFUR, M., 2022, 716–731
Citation in format AMSBIB
\Bibitem{YouEl Vol22}
\by G.~A.~Younes, N.~El Khatib, V.~A.~Volpert
\paper Existence of solution of a free boundary problem for reaction-diffusion systems
\inbook Differential and functional differential equations
\serial CMFD
\yr 2022
\vol 68
\issue 4
\pages 716--731
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd483}
\crossref{https://doi.org/10.22363/2413-3639-2022-68-4-716-731}
Linking options:
  • https://www.mathnet.ru/eng/cmfd483
  • https://www.mathnet.ru/eng/cmfd/v68/i4/p716
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024