Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2022, Volume 68, Issue 4, Pages 564–574
DOI: https://doi.org/10.22363/2413-3639-2022-68-4-564-574
(Mi cmfd474)
 

Boundary singular problems for quasilinear equations involving mixed reaction-diffusion

L. Véron

Institut Denis Poisson, Université de Tours, Tours, France
References:
Abstract: We study the existence of solutions to the problem
\begin{equation} \begin{array}{rl} -\Delta u+u^p-M|\nabla u|^q=0 & \text{in } \Omega,\\ u=\mu & \text{on } \partial\Omega \end{array} \end{equation}
in a bounded domain $\Omega$, where $p>1$, $1<q<2$, $M>0$, $\mu$ is a nonnegative Radon measure in $\partial\Omega$, and the associated problem with a boundary isolated singularity at $a\in\partial\Omega,$
\begin{equation} \begin{array}{rl} -\Delta u+u^p-M|\nabla u|^q=0 & \text{in } \Omega,\\ u=0 & \text{on } \partial\Omega\setminus\{a\}. \end{array} \end{equation}
The difficulty lies in the opposition between the two nonlinear terms which are not on the same nature. Existence of solutions to (1) is obtained under a capacitary condition
$$ \mu(K)\leq c\min\left\{cap^{\partial\Omega}_{\frac{2}{p},p'},cap^{\partial\Omega}_{\frac{2-q}{q},q'}\right\} \text{for all compacts }K\subset\partial\Omega. $$
Problem (2) depends on several critical exponents on $p$ and $q$ as well as the position of $q$ with respect to $\dfrac{2p}{p+1}$.
Keywords: reaction-diffusion equation, boundary singular problem, measure as boundary data, isolated boundary singularity.
Document Type: Article
UDC: 517.957
Language: Russian
Citation: L. Véron, “Boundary singular problems for quasilinear equations involving mixed reaction-diffusion”, Differential and functional differential equations, CMFD, 68, no. 4, PFUR, M., 2022, 564–574
Citation in format AMSBIB
\Bibitem{Ver22}
\by L.~V\'eron
\paper Boundary singular problems for quasilinear equations involving mixed reaction-diffusion
\inbook Differential and functional differential equations
\serial CMFD
\yr 2022
\vol 68
\issue 4
\pages 564--574
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd474}
\crossref{https://doi.org/10.22363/2413-3639-2022-68-4-564-574}
Linking options:
  • https://www.mathnet.ru/eng/cmfd474
  • https://www.mathnet.ru/eng/cmfd/v68/i4/p564
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:55
    Full-text PDF :32
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024