Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2022, Volume 68, Issue 4, Pages 553–563
DOI: https://doi.org/10.22363/2413-3639-2022-68-4-553-563
(Mi cmfd473)
 

Influence of numerical diffusion on the growth rate of viscous fingers in the numerical implementation of the Peaceman model by the finite volume method

D. E. Apushkinskaya, G. G. Lazareva, V. A. Okishev

Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
References:
Abstract: A numerical model of oil displacement by a mixture of water and polymer based on the Peaceman model is considered. Numerical experiments were carried out using the $\rm DuMu^x$ package, which is a software library designed for modeling nonstationary hydrodynamic problems in porous media. The software package uses the vertex-centered variant of finite volume method. The effect of diffusion on the growth rate of “viscous fingers” has been studied. The dependencies of the leading front velocity on the value of model diffusion are obtained for three viscosity models. It is shown that the effect of numerical diffusion on the growth rate of “viscous fingers” imposes limitations on calculations for small values of model diffusion.
Keywords: mathematical modeling, Peaceman model, viscous fingers, porous media, $\rm DuMu^x$ package, numerical diffusion.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-1115
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: D. E. Apushkinskaya, G. G. Lazareva, V. A. Okishev, “Influence of numerical diffusion on the growth rate of viscous fingers in the numerical implementation of the Peaceman model by the finite volume method”, Differential and functional differential equations, CMFD, 68, no. 4, PFUR, M., 2022, 553–563
Citation in format AMSBIB
\Bibitem{ApuLazOki22}
\by D.~E.~Apushkinskaya, G.~G.~Lazareva, V.~A.~Okishev
\paper Influence of numerical diffusion on the growth rate of viscous fingers in~the~numerical implementation of~the~Peaceman model by the finite volume method
\inbook Differential and functional differential equations
\serial CMFD
\yr 2022
\vol 68
\issue 4
\pages 553--563
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd473}
\crossref{https://doi.org/10.22363/2413-3639-2022-68-4-553-563}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4550500}
Linking options:
  • https://www.mathnet.ru/eng/cmfd473
  • https://www.mathnet.ru/eng/cmfd/v68/i4/p553
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:91
    Full-text PDF :51
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024