Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2022, Volume 68, Issue 3, Pages 451–466
DOI: https://doi.org/10.22363/2413-3639-2022-68-3-451-466
(Mi cmfd468)
 

Asymptotic behavior of solutions of a complete second-order integro-differential equation

D. A. Zakora

Vernadsky Crimean Federal University, Simferopol', Russia
References:
Abstract: In this paper, we study a complete second-order integro-differential operator equation in a Hilbert space. The difference-type kernel of an integral perturbation is a holomorphic semigroup bordered by unbounded operators. The asymptotic behavior of solutions of this equation is studied. Asymptotic formulas for solutions are proved in the case when the right-hand side is close to an almost periodic function. The obtained formulas are applied to the study of the problem of forced longitudinal vibrations of a viscoelastic rod with Kelvin–Voigt friction.
Bibliographic databases:
Document Type: Article
UDC: 517.968.72
Language: Russian
Citation: D. A. Zakora, “Asymptotic behavior of solutions of a complete second-order integro-differential equation”, Proceedings of the Crimean autumn mathematical school-symposium, CMFD, 68, no. 3, PFUR, M., 2022, 451–466
Citation in format AMSBIB
\Bibitem{Zak22}
\by D.~A.~Zakora
\paper Asymptotic behavior of solutions of a complete second-order integro-differential equation
\inbook Proceedings of the Crimean autumn mathematical school-symposium
\serial CMFD
\yr 2022
\vol 68
\issue 3
\pages 451--466
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd468}
\crossref{https://doi.org/10.22363/2413-3639-2022-68-3-451-466}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4497485}
Linking options:
  • https://www.mathnet.ru/eng/cmfd468
  • https://www.mathnet.ru/eng/cmfd/v68/i3/p451
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:115
    Full-text PDF :84
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024