Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2022, Volume 68, Issue 3, Pages 393–406
DOI: https://doi.org/10.22363/2413-3639-2022-68-3-393-406
(Mi cmfd465)
 

On spaces of vector functions that are holomorphic in an angular domain

V. V. Vlasov, N. A. Rautian

Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: In this paper, we study spaces of vector functions that are holomorphic in the angular domain of the complex plane and with values in a separable Hilbert space. We show that, equipped with the appropriate norms, these spaces are Hilbert spaces.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00288 A
Bibliographic databases:
Document Type: Article
UDC: 517.968.72
Language: Russian
Citation: V. V. Vlasov, N. A. Rautian, “On spaces of vector functions that are holomorphic in an angular domain”, Proceedings of the Crimean autumn mathematical school-symposium, CMFD, 68, no. 3, PFUR, M., 2022, 393–406
Citation in format AMSBIB
\Bibitem{VlaRau22}
\by V.~V.~Vlasov, N.~A.~Rautian
\paper On spaces of vector functions that are holomorphic in an angular domain
\inbook Proceedings of the Crimean autumn mathematical school-symposium
\serial CMFD
\yr 2022
\vol 68
\issue 3
\pages 393--406
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd465}
\crossref{https://doi.org/10.22363/2413-3639-2022-68-3-393-406}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4497482}
Linking options:
  • https://www.mathnet.ru/eng/cmfd465
  • https://www.mathnet.ru/eng/cmfd/v68/i3/p393
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:114
    Full-text PDF :55
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024