Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2022, Volume 68, Issue 1, Pages 80–94
DOI: https://doi.org/10.22363/2413-3639-2022-68-1-80-94
(Mi cmfd454)
 

On analytic perturbations of linear equations in the case of incomplete generalized Jordan set

D. G. Rakhimova, D. Akhmadzhanovab

a Tashkent Branch of Gubkin Russian State University of Oil and Gaz, Tashkent, Uzbekistan
b National University of Uzbekistan, Tashkent, Uzbekistan
References:
Abstract: Based on the methods of the theory of bifurcations, the problem of perturbation of linear equations by small analytic terms is considered. In contrast to the work of Trenogin [7], the case of an incomplete generalized Jordan set of a linear Fredholm operator acting from one Banach space to another Banach space is studied. A technique is proposed that uses the regularization of the Fredholm operator by a specially constructed finite-dimensional operator.
Bibliographic databases:
Document Type: Article
UDC: 517.988.67
Language: Russian
Citation: D. G. Rakhimov, D. Akhmadzhanova, “On analytic perturbations of linear equations in the case of incomplete generalized Jordan set”, Science — Technology — Education — Mathematics — Medicine, CMFD, 68, no. 1, PFUR, M., 2022, 80–94
Citation in format AMSBIB
\Bibitem{RakAkh22}
\by D.~G.~Rakhimov, D.~Akhmadzhanova
\paper On analytic perturbations of linear equations in the case of incomplete generalized Jordan set
\inbook Science — Technology — Education — Mathematics — Medicine
\serial CMFD
\yr 2022
\vol 68
\issue 1
\pages 80--94
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd454}
\crossref{https://doi.org/10.22363/2413-3639-2022-68-1-80-94}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4422559}
Linking options:
  • https://www.mathnet.ru/eng/cmfd454
  • https://www.mathnet.ru/eng/cmfd/v68/i1/p80
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñîâðåìåííàÿ ìàòåìàòèêà. Ôóíäàìåíòàëüíûå íàïðàâëåíèÿ
    Statistics & downloads:
    Abstract page:69
    Full-text PDF :42
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024