Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2022, Volume 68, Issue 1, Pages 59–69
DOI: https://doi.org/10.22363/2413-3639-2022-68-1-59-69
(Mi cmfd452)
 

This article is cited in 2 scientific papers (total in 2 papers)

Local and 2-local derivations of locally simple Lie algebras

Sh. Ayupovab, K. Kudaybergenovc, B. Yusupovb

a Romanovskiy Institute of Mathematics, Tashkent, Uzbekistan
b National University of Uzbekistan, Tashkent, Uzbekistan
c Karakalpak State University, Nukus, Uzbekistan
Full-text PDF (194 kB) Citations (2)
References:
Abstract: In the present paper, we study local and 2-local derivations of the classical locally simple Lie algebras. Firstly, we prove that every local and 2-local derivations on classical locally simple Lie algebra is a derivation. Further, we show that every local derivation of Borel subalgebras of locally simple Lie algebras is a derivation.
Document Type: Article
UDC: 512.554
Language: Russian
Citation: Sh. Ayupov, K. Kudaybergenov, B. Yusupov, “Local and 2-local derivations of locally simple Lie algebras”, Science — Technology — Education — Mathematics — Medicine, CMFD, 68, no. 1, PFUR, M., 2022, 59–69
Citation in format AMSBIB
\Bibitem{AyuKudYus22}
\by Sh.~Ayupov, K.~Kudaybergenov, B.~Yusupov
\paper Local and 2-local derivations of locally simple Lie algebras
\inbook Science — Technology — Education — Mathematics — Medicine
\serial CMFD
\yr 2022
\vol 68
\issue 1
\pages 59--69
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd452}
\crossref{https://doi.org/10.22363/2413-3639-2022-68-1-59-69}
Linking options:
  • https://www.mathnet.ru/eng/cmfd452
  • https://www.mathnet.ru/eng/cmfd/v68/i1/p59
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñîâðåìåííàÿ ìàòåìàòèêà. Ôóíäàìåíòàëüíûå íàïðàâëåíèÿ
    Statistics & downloads:
    Abstract page:196
    Full-text PDF :64
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024