Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2021, Volume 67, Issue 2, Pages 316–323
DOI: https://doi.org/10.22363/2413-3639-2021-67-2-316-323
(Mi cmfd420)
 

On the construction of a variational principle for a certain class of differential-difference operator equations

I. A. Kolesnikova

Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
References:
Abstract: In this paper, we obtain necessary and sufficient conditions for the existence of variational principles for a given first-order differential-difference operator equation with a special form of the linear operator $P_\lambda(t)$ depending on $t$ and the nonlinear operator $Q.$ Under the corresponding conditions the functional is constructed. These conditions are obtained thanks to the well-known criterion of potentiality. Examples show how the inverse problem of the calculus of variations is constructed for given differential-difference operators.
Document Type: Article
UDC: 517.972.5
Language: Russian
Citation: I. A. Kolesnikova, “On the construction of a variational principle for a certain class of differential-difference operator equations”, Dedicated to the memory of Professor N. D. Kopachevsky, CMFD, 67, no. 2, PFUR, M., 2021, 316–323
Citation in format AMSBIB
\Bibitem{Kol21}
\by I.~A.~Kolesnikova
\paper On the construction of a variational principle for a certain class of differential-difference operator equations
\inbook Dedicated to the memory of Professor N. D. Kopachevsky
\serial CMFD
\yr 2021
\vol 67
\issue 2
\pages 316--323
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd420}
\crossref{https://doi.org/10.22363/2413-3639-2021-67-2-316-323}
Linking options:
  • https://www.mathnet.ru/eng/cmfd420
  • https://www.mathnet.ru/eng/cmfd/v67/i2/p316
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:83
    Full-text PDF :32
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024