Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2021, Volume 67, Issue 2, Pages 285–294
DOI: https://doi.org/10.22363/2413-3639-2021-67-2-285-294
(Mi cmfd418)
 

Stochastic Lagrange approach to viscous hydrodynamics

Yu. E. Gliklikh

Voronezh State University, Voronezh, Russia
References:
Abstract: The work is a survey of the author's results with modifications and preliminary information on the use of stochastic analysis on Sobolev groups of diffeomorphisms of a flat $n$-dimensional torus to describe the motion of viscous fluids (nonrandom ones). The main idea is to replace the covariant derivatives on the groups of diffeomorphisms in the equations introduced by D. Ebin and J. Marsden to describe ideal fluids by the so-called mean derivatives of random processes.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00048_a
Document Type: Article
UDC: 519.216
Language: Russian
Citation: Yu. E. Gliklikh, “Stochastic Lagrange approach to viscous hydrodynamics”, Dedicated to the memory of Professor N. D. Kopachevsky, CMFD, 67, no. 2, PFUR, M., 2021, 285–294
Citation in format AMSBIB
\Bibitem{Gli21}
\by Yu.~E.~Gliklikh
\paper Stochastic Lagrange approach to viscous hydrodynamics
\inbook Dedicated to the memory of Professor N. D. Kopachevsky
\serial CMFD
\yr 2021
\vol 67
\issue 2
\pages 285--294
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd418}
\crossref{https://doi.org/10.22363/2413-3639-2021-67-2-285-294}
Linking options:
  • https://www.mathnet.ru/eng/cmfd418
  • https://www.mathnet.ru/eng/cmfd/v67/i2/p285
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024