Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2020, Volume 66, Issue 2, Pages 221–271
DOI: https://doi.org/10.22363/2413-3639-2020-66-2-221-271
(Mi cmfd402)
 

This article is cited in 3 scientific papers (total in 3 papers)

Symmetric spaces of measurable functions: old and new advances

M. A. Muratova, B.-Z. A. Rubshteinb

a V. I. Vernadsky Crimean Federal University, Simferopol, Russia
b Ben-Gurion University of the Negev, Beer-Sheva, Israel
Full-text PDF (641 kB) Citations (3)
References:
Abstract: The article is an extensive review in the theory of symmetric spaces of measurable functions.
It contains a number of new (recent) and old (known) results in this field. For the most of the results, we give their proofs or exact references, where they can be found.
The symmetric spaces under consideration are Banach (or quasi-Banach) latices of measurable functions equipped with symmetric (rearrangement invariant) norm (or quasinorm).
We consider symmetric spaces $\mathbf{E}=\mathbf{E}(\Omega,\mathcal{F}_\mu,\mu)\subset \mathbf{L}_0(\Omega,\mathcal{F}_\mu,\mu)$ on general measure spaces $(\Omega,\mathcal{F}_\mu,\mu)$, where the measures $\mu$ are assumed to be finite or infinite $\sigma$-finite and nonatomic, while there are no assumptions that $(\Omega,\mathcal{F}_\mu,\mu)$ is separable or Lebesgue space.
In the first section of the review, we describe main classes and basic properties of symmetric spaces, consider minimal, maximal, and associate spaces, the properties (A), (B), and (C), and Fatou's property.
The list of specific symmetric spaces we use includes Orlicz $\mathbf{L}_\Phi(\Omega,\mathcal{F}_\mu,\mu)$, Lorentz $\mathbf{\Lambda}_W(\Omega,\mathcal{F}_\mu,\mu)$, Marcinkiewicz $\mathbf{M}_V(\Omega,\mathcal{F}_\mu,\mu),$ and Orlicz–Lorentz $\mathbf{L}_{W,\Phi}(\Omega,\mathcal{F}_\mu,\mu)$ spaces, and, in particular, the spaces $\mathbf{L}_p(w)$, $\mathbf{M}_p(w)$, $\mathbf{L}_{p,q},$ and $\mathbf{L}_\infty(U)$.
In the second section, we deal with the dilation (Boyd) indexes of symmetric spaces and some applications of classical Hardy–Littlewood operator $H$. One of the main problems here is: when $H$ acts as a bounded operator on a given symmetric space $\mathbf{E}(\Omega,\mathcal{F}_\mu,\mu)$? A spacial attention is paid to symmetric spaces, which have Hardy–Littlewood property $(\mathcal{HLP})$ or weak Hardy–Littlewood property $(\mathcal{WHLP})$.
In the third section, we consider some interpolation theorems for the pair of spaces ($\mathbf{L}_1$, $\mathbf{L}_\infty$) including the classical Calderon–Mityagin theorem.
As an application of general theory, we prove in the last section of review Ergodic Theorems for Cesaro averages of positive contractions in symmetric spaces. Studying various types of convergence, we are interested in Dominant Ergodic Theorem ($\mathcal{DET}$), Individual (Pointwise) Ergodic Theorem ($\mathcal{IET}$), Order Ergodic Theorem ($\mathcal{OET}$), and also Mean (Statistical) Ergodic Theorem ($\mathcal{MET}$).
Document Type: Article
UDC: 519.55, 519.56
Language: Russian
Citation: M. A. Muratov, B.-Z. A. Rubshtein, “Symmetric spaces of measurable functions: old and new advances”, Proceedings of the Crimean autumn mathematical school-symposium, CMFD, 66, no. 2, PFUR, M., 2020, 221–271
Citation in format AMSBIB
\Bibitem{MurRub20}
\by M.~A.~Muratov, B.-Z.~A.~Rubshtein
\paper Symmetric spaces of measurable functions: old and new advances
\inbook Proceedings of the Crimean autumn mathematical school-symposium
\serial CMFD
\yr 2020
\vol 66
\issue 2
\pages 221--271
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd402}
\crossref{https://doi.org/10.22363/2413-3639-2020-66-2-221-271}
Linking options:
  • https://www.mathnet.ru/eng/cmfd402
  • https://www.mathnet.ru/eng/cmfd/v66/i2/p221
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024