Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2006, Volume 15, Pages 45–58 (Mi cmfd39)  

This article is cited in 3 scientific papers (total in 3 papers)

Effective method for solving singularly perturbed systems of nonlinear differential equations

S. I. Bezrodnykh, V. I. Vlasov

Dorodnitsyn Computing Centre of the Russian Academy of Sciences
Full-text PDF (209 kB) Citations (3)
References:
Abstract: A boundary-value problem for a class of singularly perturbed systems of nonlinear ordinary differential equations is considered. An analytic-numerical method for solving this problem is proposed. The method combines the operational Newton method with the method of continuation by a parameter and construction of the initial approximation in an explicit form. The method is applied to the particular system arising when simulating the interaction of physical fields in a semiconductor diode. The Frechét derivative and the Green function for the corresponding differential equation are found analytically in this case. Numerical simulations demonstrate a high efficiency and superexponential rate of convergence of the method proposed.
English version:
Journal of Mathematical Sciences, 2008, Volume 149, Issue 4, Pages 1385–1399
DOI: https://doi.org/10.1007/s10958-008-0072-6
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: S. I. Bezrodnykh, V. I. Vlasov, “Effective method for solving singularly perturbed systems of nonlinear differential equations”, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 1, CMFD, 15, PFUR, M., 2006, 45–58; Journal of Mathematical Sciences, 149:4 (2008), 1385–1399
Citation in format AMSBIB
\Bibitem{BezVla06}
\by S.~I.~Bezrodnykh, V.~I.~Vlasov
\paper Effective method for solving singularly perturbed systems of nonlinear differential equations
\inbook Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14--21, 2005). Part~1
\serial CMFD
\yr 2006
\vol 15
\pages 45--58
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd39}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2336428}
\transl
\jour Journal of Mathematical Sciences
\yr 2008
\vol 149
\issue 4
\pages 1385--1399
\crossref{https://doi.org/10.1007/s10958-008-0072-6}
Linking options:
  • https://www.mathnet.ru/eng/cmfd39
  • https://www.mathnet.ru/eng/cmfd/v15/p45
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:698
    Full-text PDF :256
    References:86
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024