Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2019, Volume 65, Issue 1, Pages 72–82
DOI: https://doi.org/10.22363/2413-3639-2019-65-1-72-82
(Mi cmfd376)
 

Reductional method in perturbation theory of generalized spectral E. Schmidt problem

D. G. Rakhimov

Branch of the Lomonosov Moscow State University in Tashkent, Tashkent, Uzbekistan
References:
Abstract: In this a paper perturbations of multiple eigenvalues of E. Schmidt spectral problems is considered. At the usage of the reductional method suggested in the articles [10, 11] the investigation of the multiple E. Schmidt perturbation eigenvalues is reduced to the investigation of perturbation of simple ones. At the end, as application of the obtained results the problem about the boundary perturbation for the system of two Sturm–Liouville problems with E. Schmidt spectral parameter is considered.
Document Type: Article
UDC: 517.988.67
Language: Russian
Citation: D. G. Rakhimov, “Reductional method in perturbation theory of generalized spectral E. Schmidt problem”, Contemporary problems in mathematics and physics, CMFD, 65, no. 1, Peoples' Friendship University of Russia, M., 2019, 72–82
Citation in format AMSBIB
\Bibitem{Rak19}
\by D.~G.~Rakhimov
\paper Reductional method in perturbation theory of generalized spectral E.~Schmidt problem
\inbook Contemporary problems in mathematics and physics
\serial CMFD
\yr 2019
\vol 65
\issue 1
\pages 72--82
\publ Peoples' Friendship University of Russia
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd376}
\crossref{https://doi.org/10.22363/2413-3639-2019-65-1-72-82}
Linking options:
  • https://www.mathnet.ru/eng/cmfd376
  • https://www.mathnet.ru/eng/cmfd/v65/i1/p72
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:106
    Full-text PDF :53
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024