Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2018, Volume 64, Issue 3, Pages 547–572
DOI: https://doi.org/10.22363/2413-3639-2018-64-3-547-572
(Mi cmfd359)
 

This article is cited in 4 scientific papers (total in 4 papers)

To the problem on small motions of the system of two viscoelastic fluids in a fixed vessel

N. D. Kopachevsky

V. I. Vernadsky Crimean Federal University, Simferopol, Russia
Full-text PDF (291 kB) Citations (4)
References:
Abstract: In this paper, we study the problem of small motions of two Oldroyd viscoelastic incompressible fluids contained in a fixed vessel. By means of the operator approach, we reduce the original initialboundary value problem to the Cauchy problem for a differential operator equation in a Hilbert space and prove the well-posed solvability of the problem on an arbitrary interval of time. We obtain the equation for normal oscillations of the hydraulic system under consideration (Krein generalized operator pencil).
Document Type: Article
UDC: 517.958
Language: Russian
Citation: N. D. Kopachevsky, “To the problem on small motions of the system of two viscoelastic fluids in a fixed vessel”, Proceedings of the Crimean autumn mathematical school-symposium, CMFD, 64, no. 3, Peoples' Friendship University of Russia, M., 2018, 547–572
Citation in format AMSBIB
\Bibitem{Kop18}
\by N.~D.~Kopachevsky
\paper To the problem on small motions of the system of two viscoelastic fluids in a~fixed vessel
\inbook Proceedings of the Crimean autumn mathematical school-symposium
\serial CMFD
\yr 2018
\vol 64
\issue 3
\pages 547--572
\publ Peoples' Friendship University of Russia
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd359}
\crossref{https://doi.org/10.22363/2413-3639-2018-64-3-547-572}
Linking options:
  • https://www.mathnet.ru/eng/cmfd359
  • https://www.mathnet.ru/eng/cmfd/v64/i3/p547
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:195
    Full-text PDF :58
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024