Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2006, Volume 15, Pages 5–18 (Mi cmfd35)  

Variational principles for spectral radii of positive functional operators

A. B. Antonevichab

a Belarusian State University
b University of Bialystok
References:
Abstract: Functional operators, i.e., sums of weighted shift operators generated by various maps, are considered. For functional operators with positive coefficients, variational principles for spectral radii are obtained. These principles say that the logarithm of the spectral radius is the Legendre transform of a certain convex functional $T$ defined on the set of probability vector-valued measures and depending on the original dynamical system and the functional space considered. In the subexponential case, we obtain the combinatorial structure of the functional $T$ with the help of the corresponding random walk process constructed according to the dynamical system.
English version:
Journal of Mathematical Sciences, 2008, Volume 149, Issue 4, Pages 1345–1358
DOI: https://doi.org/10.1007/s10958-008-0068-2
Bibliographic databases:
UDC: 517.983.23+517.984.5
Language: Russian
Citation: A. B. Antonevich, “Variational principles for spectral radii of positive functional operators”, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 1, CMFD, 15, PFUR, M., 2006, 5–18; Journal of Mathematical Sciences, 149:4 (2008), 1345–1358
Citation in format AMSBIB
\Bibitem{Ant06}
\by A.~B.~Antonevich
\paper Variational principles for spectral radii of positive functional operators
\inbook Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14--21, 2005). Part~1
\serial CMFD
\yr 2006
\vol 15
\pages 5--18
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd35}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2336424}
\transl
\jour Journal of Mathematical Sciences
\yr 2008
\vol 149
\issue 4
\pages 1345--1358
\crossref{https://doi.org/10.1007/s10958-008-0068-2}
Linking options:
  • https://www.mathnet.ru/eng/cmfd35
  • https://www.mathnet.ru/eng/cmfd/v15/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:548
    Full-text PDF :151
    References:86
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024