Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2017, Volume 63, Issue 4, Pages 586–598
DOI: https://doi.org/10.22363/2413-3639-2017-63-4-586-598
(Mi cmfd337)
 

On the stabilization rate of solutions of the Cauchy problem for nondivergent parabolic equations with growing lower-order term

V. N. Denisov

M. V. Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: In the Cauchy problem
\begin{equation*} \begin{gathered} L_1u\equiv Lu+(b,\nabla u)+cu-u_t=0,\quad(x,t)\in D,\\ u(x,0)=u_0(x),\quad x\in\mathbb R^N, \end{gathered} \end{equation*}
for nondivergent parabolic equation with growing lower-order term in the half-space $\overline D=\mathbb R^N\times[0,\infty)$, $N\geqslant3$, we prove sufficient conditions for exponential stabilization rate of solution as $t\to+\infty$ uniformly with respect to $x$ on any compact $K$ in $\mathbb R^N$ with any bounded and continuous in $\mathbb R^N$ initial function $u_0(x)$.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-00471
Document Type: Article
UDC: 517.956.4
Language: Russian
Citation: V. N. Denisov, “On the stabilization rate of solutions of the Cauchy problem for nondivergent parabolic equations with growing lower-order term”, Differential and functional differential equations, CMFD, 63, no. 4, Peoples' Friendship University of Russia, M., 2017, 586–598
Citation in format AMSBIB
\Bibitem{Den17}
\by V.~N.~Denisov
\paper On the stabilization rate of solutions of the Cauchy problem for nondivergent parabolic equations with growing lower-order term
\inbook Differential and functional differential equations
\serial CMFD
\yr 2017
\vol 63
\issue 4
\pages 586--598
\publ Peoples' Friendship University of Russia
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd337}
\crossref{https://doi.org/10.22363/2413-3639-2017-63-4-586-598}
Linking options:
  • https://www.mathnet.ru/eng/cmfd337
  • https://www.mathnet.ru/eng/cmfd/v63/i4/p586
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:154
    Full-text PDF :57
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024