Abstract:
Higher-order differential operators on a finite interval with jump conditions inside the interval are studied. Properties of spectral characteristics are obtained, and completeness and expansion theorems are proved for this class of operators.
Citation:
V. A. Yurko, “Spectral analysis of higher-order differential operators with discontinuity conditions at an interior point”, Proceedings of the Crimean autumn mathematical school-symposium, CMFD, 63, no. 2, Peoples' Friendship University of Russia, M., 2017, 362–372
\Bibitem{Yur17}
\by V.~A.~Yurko
\paper Spectral analysis of higher-order differential operators with discontinuity conditions at an interior point
\inbook Proceedings of the Crimean autumn mathematical school-symposium
\serial CMFD
\yr 2017
\vol 63
\issue 2
\pages 362--372
\publ Peoples' Friendship University of Russia
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd324}
\crossref{https://doi.org/10.22363/2413-3639-2017-63-2-362-372}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3717895}
Linking options:
https://www.mathnet.ru/eng/cmfd324
https://www.mathnet.ru/eng/cmfd/v63/i2/p362
This publication is cited in the following 4 articles:
Berezhnoy Berezhnoy, Linar Sabitov, Liliya Sekaeva, Vladimir Mikheev, Igor Garkin, “Application of cepstral methods in restoring the mechanical characteristics of the upper geological section of formations”, Russian journal of transport engineering, 10:1 (2023)
S. I. Mitrokhin, “Spektralnye svoistva differentsialnogo operatora chetnogo poryadka s razryvnoi vesovoi funktsiei”, Vestnik rossiiskikh universitetov. Matematika, 27:137 (2022), 37–57
A. A. Golubkov, “Spektr operatora Shturma—Liuvillya na krivoi s parametrom v kraevykh usloviyakh i usloviyakh razryvov reshenii”, Materialy Voronezhskoi vesennei matematicheskoi shkoly
«Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXX». Voronezh, 3–9 maya 2019 g. Chast 4, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 193, VINITI RAN, M., 2021, 45–68
S. I. Mitrokhin, “Asimptotika spektra differentsialnogo operatora chetnogo poryadka s razryvnoi vesovoi funktsiei”, Zhurnal SVMO, 22:1 (2020), 48–70