Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2017, Volume 63, Issue 2, Pages 316–339
DOI: https://doi.org/10.22363/2413-3639-2017-63-2-316-339
(Mi cmfd322)
 

This article is cited in 1 scientific paper (total in 1 paper)

Matching spectral and initial-boundary value problems

K. A. Radomirskaya

V. I. Vernadsky Crimean Federal University, 4 Vernadsky Avenue, 295007 Simferopol, Russia
Full-text PDF (297 kB) Citations (1)
References:
Abstract: Based on the approach to abstract matching boundary-value problems introduced in [18], we consider matching spectral problems for one and two domains. We study in detail the arising operator pencil with self-adjoint operator coefficients. This pencil acts in a Hilbert space and depends on two parameters. Both possible cases are considered, where one parameter is spectral and the other is fixed, and properties of solutions are obtained depending on this. Also we study initial-boundary value problems of mathematical physics generating matching problems. We prove theorems on unique solvability of a strong solution ranging in the corresponding Hilbert space.
Bibliographic databases:
Document Type: Article
UDC: 517.95+517.98
Language: Russian
Citation: K. A. Radomirskaya, “Matching spectral and initial-boundary value problems”, Proceedings of the Crimean autumn mathematical school-symposium, CMFD, 63, no. 2, Peoples' Friendship University of Russia, M., 2017, 316–339
Citation in format AMSBIB
\Bibitem{Rad17}
\by K.~A.~Radomirskaya
\paper Matching spectral and initial-boundary value problems
\inbook Proceedings of the Crimean autumn mathematical school-symposium
\serial CMFD
\yr 2017
\vol 63
\issue 2
\pages 316--339
\publ Peoples' Friendship University of Russia
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd322}
\crossref{https://doi.org/10.22363/2413-3639-2017-63-2-316-339}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3717893}
Linking options:
  • https://www.mathnet.ru/eng/cmfd322
  • https://www.mathnet.ru/eng/cmfd/v63/i2/p316
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:188
    Full-text PDF :60
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024