Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2017, Volume 63, Issue 2, Pages 247–265
DOI: https://doi.org/10.22363/2413-3639-2017-63-2-247-265
(Mi cmfd319)
 

This article is cited in 2 scientific papers (total in 2 papers)

Model of the Maxwell compressible fluid

D. A. Zakoraab

a V. I. Vernadsky Crimean Federal University, 4 Vernadsky Avenue, 295007 Simferopol, Russia
b Voronezh State University, 1 Universitetskaya Square, 1394006 Voronezh, Russia
Full-text PDF (269 kB) Citations (2)
References:
Abstract: A model of viscoelastic barotropic Maxwell fluid is investigated. The unique solvability theorem is proved for the corresponding initial-boundary value problem. The associated spectral problem is studied. We prove statements on localization of the spectrum, on the essential and discrete spectra, and on asymptotics of the spectrum.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.Z50.31.0037
Bibliographic databases:
Document Type: Article
UDC: 517.984.48+532.135
Language: Russian
Citation: D. A. Zakora, “Model of the Maxwell compressible fluid”, Proceedings of the Crimean autumn mathematical school-symposium, CMFD, 63, no. 2, Peoples' Friendship University of Russia, M., 2017, 247–265
Citation in format AMSBIB
\Bibitem{Zak17}
\by D.~A.~Zakora
\paper Model of the Maxwell compressible fluid
\inbook Proceedings of the Crimean autumn mathematical school-symposium
\serial CMFD
\yr 2017
\vol 63
\issue 2
\pages 247--265
\publ Peoples' Friendship University of Russia
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd319}
\crossref{https://doi.org/10.22363/2413-3639-2017-63-2-247-265}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3717890}
Linking options:
  • https://www.mathnet.ru/eng/cmfd319
  • https://www.mathnet.ru/eng/cmfd/v63/i2/p247
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:425
    Full-text PDF :147
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024