Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2016, Volume 62, Pages 53–71 (Mi cmfd309)  

This article is cited in 3 scientific papers (total in 3 papers)

Spectral analysis of integrodifferential equations in a Hilbert space

V. V. Vlasov, N. A. Rautian

Mech.-Math. Faculty, Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (243 kB) Citations (3)
References:
Abstract: We investigate the correct solvability of initial-value problems for abstract integrodifferential equations with unbounded operator coefficients in a Hilbert space. We do spectral analysis of operator-functions describing symbols of such equations. These equations are an abstract form of linear integrodifferential partial derivative equations arising in the viscoelasticity theory and having some other important applications. We establish the localization and the spectrum structure of operator-functions describing symbols of these equations.
Funding agency Grant number
Russian Science Foundation 14-14-00592
Document Type: Article
UDC: 517.929
Language: Russian
Citation: V. V. Vlasov, N. A. Rautian, “Spectral analysis of integrodifferential equations in a Hilbert space”, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), CMFD, 62, PFUR, M., 2016, 53–71
Citation in format AMSBIB
\Bibitem{VlaRau16}
\by V.~V.~Vlasov, N.~A.~Rautian
\paper Spectral analysis of integrodifferential equations in a~Hilbert space
\inbook Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A.~L.~Skubachevskii (Peoples' Friendship University of Russia)
\serial CMFD
\yr 2016
\vol 62
\pages 53--71
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd309}
Linking options:
  • https://www.mathnet.ru/eng/cmfd309
  • https://www.mathnet.ru/eng/cmfd/v62/p53
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:403
    Full-text PDF :125
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024