Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2016, Volume 61, Pages 164–181 (Mi cmfd305)  

On coercive solvability of parabolic equations with variable operator

A. R. Hanalyev

RUDN University, 6 Miklukho-Maklaya st., Moscow, 117198 Russia
References:
Abstract: In a Banach space $E$, the Cauchy problem
$$ v'(t)+A(t)v(t)=f(t)\quad (0\leq t\leq1),\qquad v(0)=v_0 $$
is considered for a differential equation with linear strongly positive operator $A(t)$ such that its domain $D=D(A(t))$ is everywhere dense in $E$ independently off $t$ and $A(t)$ generates an analytic semigroup $\exp\{-sA(t)\}$ ($s\geq0$). Under some natural assumptions on $A(t)$, we establish coercive solvability of the Cauchy problem in the Banach space $C_0^{\beta,\gamma}(E)$. We prove a stronger estimate of the solution compared to estimates known earlier, using weaker restrictions on $f(t)$ and $v_0$.
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. R. Hanalyev, “On coercive solvability of parabolic equations with variable operator”, Proceedings of the Crimean autumn mathematical school-symposium, CMFD, 61, PFUR, M., 2016, 164–181
Citation in format AMSBIB
\Bibitem{Han16}
\by A.~R.~Hanalyev
\paper On coercive solvability of parabolic equations with variable operator
\inbook Proceedings of the Crimean autumn mathematical school-symposium
\serial CMFD
\yr 2016
\vol 61
\pages 164--181
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd305}
Linking options:
  • https://www.mathnet.ru/eng/cmfd305
  • https://www.mathnet.ru/eng/cmfd/v61/p164
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:163
    Full-text PDF :66
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024