Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2016, Volume 59, Pages 148–172 (Mi cmfd291)  

This article is cited in 1 scientific paper (total in 1 paper)

Quadratic interaction estimate for hyperbolic conservation laws: an overview

S. Modena

S.I.S.S.A., Via Bonomea 265, 34136 Trieste, TS, Italy
Full-text PDF (320 kB) Citations (1)
References:
Abstract: In the joint work with S. Bianchini [8] (see also [6,7]), we proved a quadratic interaction estimate for the system of conservation laws
\begin{equation*} \begin{cases} u_t+f(u)_x=0,\\ u(t=0)=u_0(x), \end{cases} \end{equation*}
where $u\colon[0,\infty)\times\mathbb R\to\mathbb R^n$, $f\colon\mathbb R^n\to\mathbb R^n$ is strictly hyperbolic, and $\operatorname{Tot.Var.}(u_0)\ll1$ For a wavefront solution in which only two wavefronts at a time interact, such estimate can be written in the form
\begin{equation*} \sum_{\text{время взаимодействия }t_j}\frac{|\sigma(\alpha_j)-\sigma(\alpha'_j)||\alpha_j||\alpha'_j|}{|\alpha_j|+|\alpha'_j|}\leq C(f)\operatorname{Tot.Var.}(u_0)^2, \end{equation*}
where $\alpha_j$ and $\alpha'_j$ are the wavefronts interacting at the interaction time $t_j,$ $\sigma(\cdot)$ is the speed, $|\cdot|$ denotes the strength, and $C(f)$ is a constant depending only on $f$ (see [8, Theorem 1.1] or Theorem 3.1 in the present paper for a more general form).
The aim of this paper is to provide the reader with a proof of such quadratic estimate in a simplified setting, in which:
  • all the main ideas of the construction are presented;
  • all the technicalities of the proof in the general setting [8] are avoided.
Document Type: Article
UDC: 517
Language: Russian
Citation: S. Modena, “Quadratic interaction estimate for hyperbolic conservation laws: an overview”, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, CMFD, 59, PFUR, M., 2016, 148–172
Citation in format AMSBIB
\Bibitem{Mod16}
\by S.~Modena
\paper Quadratic interaction estimate for hyperbolic conservation laws: an overview
\inbook Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22--29, 2014). Part~2
\serial CMFD
\yr 2016
\vol 59
\pages 148--172
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd291}
Linking options:
  • https://www.mathnet.ru/eng/cmfd291
  • https://www.mathnet.ru/eng/cmfd/v59/p148
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:199
    Full-text PDF :36
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024