Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2016, Volume 59, Pages 119–147 (Mi cmfd290)  

This article is cited in 1 scientific paper (total in 1 paper)

Differential equations with degenerate, depending on the unknown function operator at the derivative

B. V. Loginova, Yu. B. Rousakb, L. R. Kim-Tyanc

a Ul'yanovsk State Technical University, Ul'yanovsk, Russia
b Department of Social Service, Canberra, Australia
c National University of Science and Technology "MISIS", Moscow, Russia
Full-text PDF (369 kB) Citations (1)
References:
Abstract: We develop the theory of generalized Jordan chains of multiparameter operator functions $A(\lambda)\colon E_1\to E_2$, $\lambda\in\Lambda$, $\dim\Lambda=k$, $\dim E_1=\dim E_2=n$, where $A_0=A(0)$ is a noninvertible operator. To simplify the notation, in 1–3 the geometric multiplicity $\lambda_0$ is set to 1, i.e. $\dim N(A_0)=1$, $N(A_0)=\operatorname{span}\{\varphi\}$, $\dim N^\ast(A_0^\ast)=1$, $N^\ast(A_0^\ast)=\operatorname{span}\{\psi\}$, and the operator function $A(\lambda)$ is supposed to be linear with respect to $\lambda$. For the polynomial dependence of $A(\lambda)$, in 4 we consider a linearization. However, the bifurcation existence theorems hold in the case of several Jordan chains as well.
We consider applications to degenerate differential equations of the form $[A_{0}+R(\cdot,x)]x'=Bx$.
Document Type: Article
UDC: 517.9
Language: Russian
Citation: B. V. Loginov, Yu. B. Rousak, L. R. Kim-Tyan, “Differential equations with degenerate, depending on the unknown function operator at the derivative”, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, CMFD, 59, PFUR, M., 2016, 119–147
Citation in format AMSBIB
\Bibitem{LogRusKim16}
\by B.~V.~Loginov, Yu.~B.~Rousak, L.~R.~Kim-Tyan
\paper Differential equations with degenerate, depending on the unknown function operator at the derivative
\inbook Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22--29, 2014). Part~2
\serial CMFD
\yr 2016
\vol 59
\pages 119--147
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd290}
Linking options:
  • https://www.mathnet.ru/eng/cmfd290
  • https://www.mathnet.ru/eng/cmfd/v59/p119
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:376
    Full-text PDF :194
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024