|
Contemporary Mathematics. Fundamental Directions, 2016, Volume 59, Pages 53–73
(Mi cmfd287)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
On the stabilization rate of solutions of the Cauchy problem for a parabolic equation with lower-order terms
V. N. Denisov M. V. Lomonosov Moscow State University, Moscow,
Russia
Abstract:
For a parabolic equation in the half-space ¯D=RN×[0,∞), N⩾3, we consider the Cauchy problem
L1u≡Lu+c(x,t)u−ut=0,(x,t)∈D,u(x,0)=u0(x),x∈RN.
Depending on estimates on the coefficient c(x,t), we establish power or exponential rate of stabilization of solutions of the Cauchy problem равномерно по x на каждом компакте K в RN для произвольной ограниченной непрерывной в RN начальной функции u0(x).
Citation:
V. N. Denisov, “On the stabilization rate of solutions of the Cauchy problem for a parabolic equation with lower-order terms”, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, CMFD, 59, PFUR, M., 2016, 53–73
Linking options:
https://www.mathnet.ru/eng/cmfd287 https://www.mathnet.ru/eng/cmfd/v59/p53
|
Statistics & downloads: |
Abstract page: | 370 | Full-text PDF : | 81 | References: | 52 |
|