|
Contemporary Mathematics. Fundamental Directions, 2016, Volume 59, Pages 53–73
(Mi cmfd287)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
On the stabilization rate of solutions of the Cauchy problem for a parabolic equation with lower-order terms
V. N. Denisov M. V. Lomonosov Moscow State University, Moscow,
Russia
Abstract:
For a parabolic equation in the half-space $\overline D=\mathbb R^N\times[0,\infty)$, $N\geqslant3$, we consider the Cauchy problem
\begin{gather*}
L_1u\equiv Lu+c(x,t)u-u_t=0,\quad (x,t)\in D,\\
u(x,0)=u_0(x),\quad x\in\mathbb R^N.
\end{gather*}
Depending on estimates on the coefficient $c(x,t),$ we establish power or exponential rate of stabilization of solutions of the Cauchy problem равномерно по $x$ на каждом компакте $K$ в $\mathbb R^N$ для произвольной ограниченной непрерывной в $\mathbb R^N$ начальной функции $u_0(x)$.
Citation:
V. N. Denisov, “On the stabilization rate of solutions of the Cauchy problem for a parabolic equation with lower-order terms”, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, CMFD, 59, PFUR, M., 2016, 53–73
Linking options:
https://www.mathnet.ru/eng/cmfd287 https://www.mathnet.ru/eng/cmfd/v59/p53
|
Statistics & downloads: |
Abstract page: | 332 | Full-text PDF : | 69 | References: | 41 |
|