|
Contemporary Mathematics. Fundamental Directions, 2015, Volume 58, Pages 153–165
(Mi cmfd284)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
Smoothness of generalized solutions of the Dirichlet problem for strongly elliptic functional differential equations with orthotropic contractions
A. L. Tasevich RUDN University, Moscow, Russia
Abstract:
In the disk, we consider the first boundary-value problem for a functional differential equation containing transformations of orthotropic contractions of independent variables of the unknown function. We study the smoothness of generalized solutions inside special-type subdomains and near their boundaries and pose strong ellipticity conditions.
Citation:
A. L. Tasevich, “Smoothness of generalized solutions of the Dirichlet problem for strongly elliptic functional differential equations with orthotropic contractions”, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, CMFD, 58, PFUR, M., 2015, 153–165; Journal of Mathematical Sciences, 233:4 (2018), 541–554
Linking options:
https://www.mathnet.ru/eng/cmfd284 https://www.mathnet.ru/eng/cmfd/v58/p153
|
Statistics & downloads: |
Abstract page: | 361 | Full-text PDF : | 86 | References: | 77 |
|