Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2015, Volume 58, Pages 128–152 (Mi cmfd283)  

This article is cited in 20 scientific papers (total in 20 papers)

The Riesz basis property with brackets for Dirac systems with summable potentials

A. M. Savchuk, I. V. Sadovnichaya

Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: In the space $\mathbb H=(L_2[0,\pi])^2$, we study the Dirac operator $\mathcal L_{P,U},$ generated by the differential expression $\ell_P(\mathbf y)=B\mathbf y'+P\mathbf y$, where
$$ B=\begin{pmatrix} -i&0\\ 0&i \end{pmatrix}, \qquad P(x)= \begin{pmatrix} p_1(x)& p_2(x)\\ p_3(x)& p_4(x) \end{pmatrix}, \qquad \mathbf y(x)= \begin{pmatrix} y_1(x)\\ y_2(x) \end{pmatrix}, $$
and the regular boundary conditions
$$ U(\mathbf y)= \begin{pmatrix} u_{11}& u_{12}\\ u_{21}& u_{22} \end{pmatrix} \begin{pmatrix} y_1(0)\\ y_2(0) \end{pmatrix}+ \begin{pmatrix} u_{13}& u_{14}\\ u_{23}& u_{24} \end{pmatrix} \begin{pmatrix} y_1(\pi)\\ y_2(\pi) \end{pmatrix}=0. $$
The elements of the matrix $P$ are assumed to be complex-valued functions summable over $[0,\pi]$. We show that the spectrum of the operator $\mathcal L_{P,U}$ is discrete and consists of eigenvalues $\{\lambda_n\}_{n\in\mathbb Z}$, such that $\lambda_n=\lambda_n^0+o(1)$ as $|n|\to\infty$, where $\{\lambda_n^0\}_{n\in\mathbb Z}$ is the spectrum of the operator $\mathcal L_{0,U}$ with zero potential and the same boundary conditions. If the boundary conditions are strongly regular, then the spectrum of the operator $\mathcal L_{P,U}$ is asymptotically simple. We show that the system of eigenfunctions and associate functions of the operator $\mathcal L_{P,U}$ forms a Riesz base in the space $\mathbb H$ provided that the eigenfunctions are normed. If the boundary conditions are regular, but not strongly regular, then all eigenvalues of the operator $\mathcal L_{0,U}$ are double, all eigenvalues of the operator $\mathcal L_{P,U}$ are asymptotically double, and the system formed by the corresponding two-dimensional root subspaces of the operator $\mathcal L_{P,U},$ is a Riesz base of subspaces (Riesz base with brackets) in the space $\mathbb H$.
English version:
Journal of Mathematical Sciences, 2018, Volume 233, Issue 4, Pages 514–540
DOI: https://doi.org/10.1007/s10958-018-3941-7
Document Type: Article
UDC: 517.984.52
Language: Russian
Citation: A. M. Savchuk, I. V. Sadovnichaya, “The Riesz basis property with brackets for Dirac systems with summable potentials”, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, CMFD, 58, PFUR, M., 2015, 128–152; Journal of Mathematical Sciences, 233:4 (2018), 514–540
Citation in format AMSBIB
\Bibitem{SavSad15}
\by A.~M.~Savchuk, I.~V.~Sadovnichaya
\paper The Riesz basis property with brackets for Dirac systems with summable potentials
\inbook Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22--29, 2014). Part~1
\serial CMFD
\yr 2015
\vol 58
\pages 128--152
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd283}
\transl
\jour Journal of Mathematical Sciences
\yr 2018
\vol 233
\issue 4
\pages 514--540
\crossref{https://doi.org/10.1007/s10958-018-3941-7}
Linking options:
  • https://www.mathnet.ru/eng/cmfd283
  • https://www.mathnet.ru/eng/cmfd/v58/p128
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:490
    Full-text PDF :198
    References:64
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024