Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2003, Volume 1, Pages 18–29 (Mi cmfd28)  

This article is cited in 3 scientific papers (total in 3 papers)

Equations of Advanced–Retarded Type and Solutions of Traveling-Wave Type for Infinite-Dimensional Dynamic Systems

L. A. Beklaryan

Central Economics and Mathematics Institute, RAS
Full-text PDF (196 kB) Citations (3)
References:
Abstract: In the paper we study infinite-dimensional dynamic systems with the Frenkel–Kontorova potentials. For such systems we describe their traveling-wave-type solutions, which are solutions for the corresponding boundary-value problem with nonlocal conditions. Describing the mentioned solutions is equivalent to describing the space of solutions for a functional differential equation that can be canonically derived from the original dynamic system. The stability of traveling-wave-type solutions is also investigated.
English version:
Journal of Mathematical Sciences, 2004, Volume 124, Issue 4, Pages 5098–5109
DOI: https://doi.org/10.1023/B:JOTH.0000047247.93967.3e
Bibliographic databases:
UDC: 517.929
Language: Russian
Citation: L. A. Beklaryan, “Equations of Advanced–Retarded Type and Solutions of Traveling-Wave Type for Infinite-Dimensional Dynamic Systems”, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 1, CMFD, 1, MAI, M., 2003, 18–29; Journal of Mathematical Sciences, 124:4 (2004), 5098–5109
Citation in format AMSBIB
\Bibitem{Bek03}
\by L.~A.~Beklaryan
\paper Equations of Advanced--Retarded Type and Solutions of Traveling-Wave Type for Infinite-Dimensional Dynamic Systems
\inbook Proceedings of the International Conference on Differential and Functional-Differential Equations --- Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11--17 August, 2002). Part~1
\serial CMFD
\yr 2003
\vol 1
\pages 18--29
\publ MAI
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd28}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2129125}
\zmath{https://zbmath.org/?q=an:1069.37062}
\transl
\jour Journal of Mathematical Sciences
\yr 2004
\vol 124
\issue 4
\pages 5098--5109
\crossref{https://doi.org/10.1023/B:JOTH.0000047247.93967.3e}
Linking options:
  • https://www.mathnet.ru/eng/cmfd28
  • https://www.mathnet.ru/eng/cmfd/v1/p18
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:351
    Full-text PDF :120
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024