Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2015, Volume 56, Pages 5–128 (Mi cmfd268)  

This article is cited in 10 scientific papers (total in 10 papers)

Typicality of chaotic fractal behavior of integral vortices in Hamiltonian systems with discontinuous right hand side

M. I. Zelikina, L. V. Lokutsievskiia, R. Hildebrandb

a Lomonosov Moscow State University, Moscow
b Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
References:
Abstract: In this paper, we consider linear-quadratic deterministic optimal control problems where the controls take values in a two-dimensional simplex. The phase portrait of the optimal synthesis contains second-order singular extremals and exhibits modes of infinite accumulations of switchings in a finite time, so-called chattering. We prove the presence of an entirely new phenomenon, namely, the chaotic behavior of bounded pieces of optimal trajectories. We find the hyperbolic domains in the neighborhood of a homoclinic point and estimate the corresponding contraction-extension coefficients. This gives us a possibility of calculating the entropy and the Hausdorff dimension of the nonwandering set, which appears to have a Cantor-like structure as in Smale's horseshoe. The dynamics of the system is described by a topological Markov chain. In the second part it is shown that this behavior is generic for piecewise smooth Hamiltonian systems in the vicinity of a junction of three discontinuity hyper-surface strata.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00784
English version:
Journal of Mathematical Sciences, 2017, Volume 221, Issue 1, Pages 1–136
DOI: https://doi.org/10.1007/s10958-017-3221-y
Document Type: Article
UDC: 517.9
Language: Russian
Citation: M. I. Zelikin, L. V. Lokutsievskii, R. Hildebrand, “Typicality of chaotic fractal behavior of integral vortices in Hamiltonian systems with discontinuous right hand side”, Optimal control, CMFD, 56, PFUR, M., 2015, 5–128; Journal of Mathematical Sciences, 221:1 (2017), 1–136
Citation in format AMSBIB
\Bibitem{ZelLokHil15}
\by M.~I.~Zelikin, L.~V.~Lokutsievskii, R.~Hildebrand
\paper Typicality of chaotic fractal behavior of integral vortices in Hamiltonian systems with discontinuous right hand side
\inbook Optimal control
\serial CMFD
\yr 2015
\vol 56
\pages 5--128
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd268}
\transl
\jour Journal of Mathematical Sciences
\yr 2017
\vol 221
\issue 1
\pages 1--136
\crossref{https://doi.org/10.1007/s10958-017-3221-y}
Linking options:
  • https://www.mathnet.ru/eng/cmfd268
  • https://www.mathnet.ru/eng/cmfd/v56/p5
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024