Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2014, Volume 53, Pages 133–154 (Mi cmfd263)  

On nonviscous solutions of a multicomponent euler system

V. V. Palina, E. V. Radkevicha, N. N. Yakovlevb, E. A. Lukashevb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Turaevo Machine-Building Design Bureau «Soyuz»
References:
Abstract: We construct a nonstandard regularization for a multicomponent Euler system and obtain analogs of the Hugoniót condition and the Lax stability condition. We investigate the local accessibility problem for phase space points and construct dual bifurcations of one-front solutions of the truncated Euler system into two-front solutions.
English version:
Journal of Mathematical Sciences, 2016, Volume 218, Issue 4, Pages 503–525
DOI: https://doi.org/10.1007/s10958-016-3040-6
Document Type: Article
UDC: 517.9
Language: Russian
Citation: V. V. Palin, E. V. Radkevich, N. N. Yakovlev, E. A. Lukashev, “On nonviscous solutions of a multicomponent euler system”, Proceedings of the Crimean autumn mathematical school-symposium, CMFD, 53, PFUR, M., 2014, 133–154; Journal of Mathematical Sciences, 218:4 (2016), 503–525
Citation in format AMSBIB
\Bibitem{PalRadYak14}
\by V.~V.~Palin, E.~V.~Radkevich, N.~N.~Yakovlev, E.~A.~Lukashev
\paper On nonviscous solutions of a~multicomponent euler system
\inbook Proceedings of the Crimean autumn mathematical school-symposium
\serial CMFD
\yr 2014
\vol 53
\pages 133--154
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd263}
\transl
\jour Journal of Mathematical Sciences
\yr 2016
\vol 218
\issue 4
\pages 503--525
\crossref{https://doi.org/10.1007/s10958-016-3040-6}
Linking options:
  • https://www.mathnet.ru/eng/cmfd263
  • https://www.mathnet.ru/eng/cmfd/v53/p133
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:271
    Full-text PDF :110
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024