Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2013, Volume 51, Pages 110–122 (Mi cmfd257)  

This article is cited in 2 scientific papers (total in 2 papers)

On the chromatic numbers of integer and rational lattices

V. O. Manturov

Faculty of Mechanics and Mathematics, M. V. Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (206 kB) Citations (2)
References:
Abstract: In this paper, we give new upper bounds for the chromatic numbers for integer lattices and some rational spaces and other lattices. In particular, we have proved that for any concrete integer number $d$, the chromatic number of $\mathbb Z^n$ with critical distance $\sqrt{2d}$ has a polynomial growth in $n$ with exponent less than or equal to $d$ (sometimes this estimate is sharp). The same statement is true not only in the Euclidean norm, but also in any $l_p$ norm. Moreover, we have given concrete estimates for some small dimensions as well as upper bounds for the chromatic number of $\mathbb Q_p^n$, where by $\mathbb Q_p$ we mean the ring of all rational numbers having denominators not divisible by some prime numbers.
English version:
Journal of Mathematical Sciences, 2016, Volume 214, Issue 5, Pages 687–698
DOI: https://doi.org/10.1007/s10958-016-2806-1
Document Type: Article
UDC: 519.1
Language: Russian
Citation: V. O. Manturov, “On the chromatic numbers of integer and rational lattices”, Topology, CMFD, 51, PFUR, M., 2013, 110–122; Journal of Mathematical Sciences, 214:5 (2016), 687–698
Citation in format AMSBIB
\Bibitem{Man13}
\by V.~O.~Manturov
\paper On the chromatic numbers of integer and rational lattices
\inbook Topology
\serial CMFD
\yr 2013
\vol 51
\pages 110--122
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd257}
\transl
\jour Journal of Mathematical Sciences
\yr 2016
\vol 214
\issue 5
\pages 687--698
\crossref{https://doi.org/10.1007/s10958-016-2806-1}
Linking options:
  • https://www.mathnet.ru/eng/cmfd257
  • https://www.mathnet.ru/eng/cmfd/v51/p110
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:294
    Full-text PDF :138
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024