Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2013, Volume 51, Pages 21–32 (Mi cmfd252)  

This article is cited in 1 scientific paper (total in 1 paper)

An invariant of knots in thickened surfaces

M. V. Zenkina

Faculty of Mathematics, Moscow State Pedagogical University, Moscow, Russia
Full-text PDF (565 kB) Citations (1)
References:
Abstract: In the present paper, we construct an invariant of knots in the thickened sphere with $g$g handles dependent on $2g+3$ variables. In the construction of the invariant we use the Wirtinger presentation of the knot group and the concept of parity introduced by Manturov [9]. In the present paper, we also consider examples of knots in the thickened torus considered in [2] such that their nonequivalence is proved by using the constructed polynomial.
English version:
Journal of Mathematical Sciences, 2016, Volume 214, Issue 5, Pages 728–740
DOI: https://doi.org/10.1007/s10958-016-2809-y
Document Type: Article
UDC: 515.162.8
Language: Russian
Citation: M. V. Zenkina, “An invariant of knots in thickened surfaces”, Topology, CMFD, 51, PFUR, M., 2013, 21–32; Journal of Mathematical Sciences, 214:5 (2016), 728–740
Citation in format AMSBIB
\Bibitem{Zen13}
\by M.~V.~Zenkina
\paper An invariant of knots in thickened surfaces
\inbook Topology
\serial CMFD
\yr 2013
\vol 51
\pages 21--32
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd252}
\transl
\jour Journal of Mathematical Sciences
\yr 2016
\vol 214
\issue 5
\pages 728--740
\crossref{https://doi.org/10.1007/s10958-016-2809-y}
Linking options:
  • https://www.mathnet.ru/eng/cmfd252
  • https://www.mathnet.ru/eng/cmfd/v51/p21
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:195
    Full-text PDF :72
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024