Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2013, Volume 48, Pages 120–133 (Mi cmfd244)  

This article is cited in 5 scientific papers (total in 5 papers)

The Neumann problem for elliptic systems on a plane

A. Soldatov

Belgorod State National Research University, Department of Mathematical Analysis, Belgorod, Russia
Full-text PDF (280 kB) Citations (5)
References:
Abstract: Second order elliptic systems with constant leading coefficients are considered. It is shown that the Bitsadze definition of weakly connected elliptic systems is equivalent to the known Shapiro–Lopatinskiy condition with respect to the Dirichlet problem for weakly connected elliptic systems. An analogue of potentials of double layer for these systems is introduced in the frame of functional theoretic approach. With the help of these potentials all solutions are described in the Holder $C^\mu(D)$ and Hardy $h^p(D)$ classes as well as in the class $C(\overline D)$ of all continuous functions.
English version:
Journal of Mathematical Sciences, 2014, Volume 202, Issue 6, Pages 897–910
DOI: https://doi.org/10.1007/s10958-014-2085-7
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. Soldatov, “The Neumann problem for elliptic systems on a plane”, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 4, CMFD, 48, PFUR, M., 2013, 120–133; Journal of Mathematical Sciences, 202:6 (2014), 897–910
Citation in format AMSBIB
\Bibitem{Sol13}
\by A.~Soldatov
\paper The Neumann problem for elliptic systems on a~plane
\inbook Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14--21, 2011). Part~4
\serial CMFD
\yr 2013
\vol 48
\pages 120--133
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd244}
\transl
\jour Journal of Mathematical Sciences
\yr 2014
\vol 202
\issue 6
\pages 897--910
\crossref{https://doi.org/10.1007/s10958-014-2085-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919916313}
Linking options:
  • https://www.mathnet.ru/eng/cmfd244
  • https://www.mathnet.ru/eng/cmfd/v48/p120
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:322
    Full-text PDF :134
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024