Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2013, Volume 48, Pages 111–119 (Mi cmfd243)  

Adiabatic limit for hyperbolic Ginzburg–Landau equations

A. G. Sergeev

Steklov Mathematical Institute, Moscow, Russia
References:
Abstract: We study the adiabatic limit in hyperbolic Ginzburg–Landau equations which are Euler–Lagrange equations for the Abelian Higgs model. Solutions of Ginzburg–Landau equations in this limit converge to geodesics on the moduli space of static solutions in the metric determined by the kinetic energy of the system. According to heuristic adiabatic principle, every solution of Ginzburg–Landau equations with sufficiently small kinetic energy can be obtained as a perturbation of some geodesic. A rigorous proof of this result was proposed recently by Palvelev.
English version:
Journal of Mathematical Sciences, 2014, Volume 202, Issue 6, Pages 887–896
DOI: https://doi.org/10.1007/s10958-014-2084-8
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: A. G. Sergeev, “Adiabatic limit for hyperbolic Ginzburg–Landau equations”, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 4, CMFD, 48, PFUR, M., 2013, 111–119; Journal of Mathematical Sciences, 202:6 (2014), 887–896
Citation in format AMSBIB
\Bibitem{Ser13}
\by A.~G.~Sergeev
\paper Adiabatic limit for hyperbolic Ginzburg--Landau equations
\inbook Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14--21, 2011). Part~4
\serial CMFD
\yr 2013
\vol 48
\pages 111--119
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd243}
\transl
\jour Journal of Mathematical Sciences
\yr 2014
\vol 202
\issue 6
\pages 887--896
\crossref{https://doi.org/10.1007/s10958-014-2084-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919934591}
Linking options:
  • https://www.mathnet.ru/eng/cmfd243
  • https://www.mathnet.ru/eng/cmfd/v48/p111
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:334
    Full-text PDF :83
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024