Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2012, Volume 46, Pages 92–119 (Mi cmfd231)  

This article is cited in 33 scientific papers (total in 33 papers)

Topological approximation approach to study of mathematical problems of hydrodynamics

V. G. Zvyagin

Russia, Voronezh
References:
Abstract: We give a description of an abstract scheme of the topological approximation method and mention those fields where its application to concrete models of hydrodynamics yields results. As an illustration, we expose in detail the problem of optimal control of right-hand sides in the initialboundary value problem describing the motion of a viscoelastic incompressible fluid in the Jeffreys model with the Jaumann objective derivative.
English version:
Journal of Mathematical Sciences, 2014, Volume 201, Issue 6, Pages 830–858
DOI: https://doi.org/10.1007/s10958-014-2028-3
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: V. G. Zvyagin, “Topological approximation approach to study of mathematical problems of hydrodynamics”, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, CMFD, 46, PFUR, M., 2012, 92–119; Journal of Mathematical Sciences, 201:6 (2014), 830–858
Citation in format AMSBIB
\Bibitem{Zvy12}
\by V.~G.~Zvyagin
\paper Topological approximation approach to study of mathematical problems of hydrodynamics
\inbook Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14--21, 2011). Part~2
\serial CMFD
\yr 2012
\vol 46
\pages 92--119
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd231}
\transl
\jour Journal of Mathematical Sciences
\yr 2014
\vol 201
\issue 6
\pages 830--858
\crossref{https://doi.org/10.1007/s10958-014-2028-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919926064}
Linking options:
  • https://www.mathnet.ru/eng/cmfd231
  • https://www.mathnet.ru/eng/cmfd/v46/p92
  • This publication is cited in the following 33 articles:
    1. A. V. Zvyagin, “On the existence of weak solutions of the Kelvin–Voigt model”, Math. Notes, 116:1 (2024), 130–135  mathnet  crossref  crossref
    2. A. S. Ustyuzhaninova, “Ravnomernye attraktory modeli Bingama”, Izv. vuzov. Matem., 2024, no. 8, 65–80  mathnet  crossref
    3. A. S. Ustiuzhaninova, “Uniform Attractors for the Bingham Model”, Russ Math., 68:8 (2024), 56  crossref
    4. Victor Zvyagin, Mikhail Turbin, “Weak solvability of the initial-boundary value problem for a finite-order model of the inhomogeneous incompressible Kelvin-Voigt fluid without a positive lower bound on the initial condition of fluid density”, EECT, 2024  crossref
    5. V. G. Zvyagin, M. V. Turbin, “Solvability of the initial-boundary value problem for the Kelvin–Voigt fluid motion model with variable density”, Dokl. Math., 107:1 (2023), 9–11  mathnet  crossref  crossref  elib
    6. V. G. Zvyagin, M. V. Turbin, “An Existence Theorem for Weak Solutions of the Initial–Boundary Value Problem for the Inhomogeneous Incompressible Kelvin–Voigt Model in Which the Initial Value of Density is Not Bounded from Below”, Math. Notes, 114:4 (2023), 630–634  mathnet  crossref  crossref
    7. A. V. Zvyagin, E. I. Kostenko, “Zadacha suschestvovaniya upravleniya s obratnoi svyazyu dlya odnoi drobnoi modeli Foigta”, SMFN, 69, no. 4, Rossiiskii universitet druzhby narodov, M., 2023, 621–642  mathnet  crossref
    8. A. V. Zvyagin, “Uniform Attractors for Non-Autonomous Systems of Nonlinearly Viscous Fluid”, Lobachevskii J Math, 44:3 (2023), 956  crossref
    9. Andrey Zvyagin, Ekaterina Kostenko, “Investigation of the Weak Solvability of One Viscoelastic Fractional Voigt Model”, Mathematics, 11:21 (2023), 4472  crossref
    10. A. V. Zvyagin, E. I. Kostenko, “On the Existence of Feedback Control for One Fractional Voigt Model”, Diff Equat, 59:12 (2023), 1778  crossref
    11. Victor Zvyagin, Mikhail Turbin, “Weak solvability of the initial-boundary value problem for inhomogeneous incompressible Kelvin–Voigt fluid motion model of arbitrary finite order”, J. Fixed Point Theory Appl., 25:3 (2023)  crossref
    12. A. V. Zvyagin, “Weak solvability of non-linearly viscous Pavlovsky model”, Russian Math. (Iz. VUZ), 66:6 (2022), 73–78  mathnet  crossref  crossref
    13. Andrey Zvyagin, “Solvability of the Non-Linearly Viscous Polymer Solutions Motion Model”, Polymers, 14:6 (2022), 1264  crossref
    14. A. V. Zvyagin, “Investigation of the weak solubility of the fractional Voigt alpha-model”, Izv. Math., 85:1 (2021), 61–91  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. A. V. Zvyagin, “An alpha-model of polymer solutions motion”, Russian Math. (Iz. VUZ), 65:5 (2021), 21–29  mathnet  crossref  crossref  isi
    16. Allaberen Ashyralyev, Victor Zvyagin, Andrey Zvyagin, INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2020), 2325, INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2020), 2021, 020003  crossref
    17. Victor Zvyagin, Mikhail Turbin, “Optimal feedback control problem for inhomogeneous Voigt fluid motion model”, J. Fixed Point Theory Appl., 23:1 (2021)  crossref
    18. V. G. Zvyagin, A. V. Zvyagin, Nguyen Minh Hong, “Optimal Feedback Control for a Model of Motion of a Nonlinearly Viscous Fluid”, Diff Equat, 57:1 (2021), 122  crossref
    19. V. G. Zvyagin, A. V. Zvyagin, N. M. Khong, “Optimalnoe upravlenie s obratnoi svyazyu dlya odnoi modeli dvizheniya nelineino-vyazkoi zhidkosti”, Chebyshevskii sb., 21:2 (2020), 144–158  mathnet  crossref
    20. Victor Zvyagin, Andrey Zvyagin, Anastasiia Ustiuzhaninova, “Optimal Feedback Control Problem for the Fractional Voigt-α Model”, Mathematics, 8:7 (2020), 1197  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:688
    Full-text PDF :224
    References:103
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025