Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2011, Volume 42, Pages 118–124 (Mi cmfd194)  

This article is cited in 5 scientific papers (total in 5 papers)

The canonical theory of the impulse process optimality

V. A. Dykhtaab, O. N. Samsonyukab

a Institute of System Dynamics and Control Theory, SB RAS, Irkutsk, Russia
b Institute of Mathematics, Economics and Informatics of Irkutsk State University, Irkutsk, Russia
Full-text PDF (139 kB) Citations (5)
References:
Abstract: The paper is devoted to the development of the canonical theory of the Hamilton–Jacobi optimality for nonlinear dynamical systems with controls of the vector measure type and with trajectories of bounded variation. Infinitesimal conditions of the strong and weak monotonicity of continuous Lyapunov-type functions with respect to the impulsive dynamical system are formulated. Necessary and sufficient conditions of the global optimality for the problem of the optimal impulsive control with general end restrictions are represented. The conditions include the sets of weak and strong monotone Lyapunov-type functions and are based on the reduction of the original problem of the optimal impulsive control a finite-dimensional optimization problem on an estimated set of connectable points.
English version:
Journal of Mathematical Sciences, 2014, Volume 199, Issue 6, Pages 646–653
DOI: https://doi.org/10.1007/s10958-014-1891-2
Bibliographic databases:
Document Type: Article
UDC: 517.977.5
Language: Russian
Citation: V. A. Dykhta, O. N. Samsonyuk, “The canonical theory of the impulse process optimality”, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), CMFD, 42, PFUR, M., 2011, 118–124; Journal of Mathematical Sciences, 199:6 (2014), 646–653
Citation in format AMSBIB
\Bibitem{DykSam11}
\by V.~A.~Dykhta, O.~N.~Samsonyuk
\paper The canonical theory of the impulse process optimality
\inbook Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3--7, 2009)
\serial CMFD
\yr 2011
\vol 42
\pages 118--124
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd194}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3013832}
\transl
\jour Journal of Mathematical Sciences
\yr 2014
\vol 199
\issue 6
\pages 646--653
\crossref{https://doi.org/10.1007/s10958-014-1891-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902841741}
Linking options:
  • https://www.mathnet.ru/eng/cmfd194
  • https://www.mathnet.ru/eng/cmfd/v42/p118
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:466
    Full-text PDF :123
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024