Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2003, Volume 2, Pages 5–44 (Mi cmfd19)  

This article is cited in 7 scientific papers (total in 7 papers)

Hugoniót–Maslov Chains for Singular Vortical Solutions to Quasilinear Hyperbolic Systems and Typhoon Trajectory

S. Yu. Dobrokhotova, E. S. Semenova, B. Tirozzib

a A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
b University of Rome "La Sapienza"
Full-text PDF (424 kB) Citations (7)
References:
Abstract: According to Maslov, many 2D quasilinear systems of PDE possess only three algebras of singular solutions with properties of structural self-similarity and stability. They are the algebras of shock waves, narrow solitons, and square-root point singularities (solitary vortices). Their propagation is described by infinite chains of ODE (the Hugoniót–Maslov chains). We consider the Hugoniót–Maslov chain for the square-root point singularities of the shallow water equations. We discuss different related mathematical questions (in particular, unexpected integrability effects) as well as their possible application to the problem of typhoon dynamics.
English version:
Journal of Mathematical Sciences, 2004, Volume 124, Issue 5, Pages 5209–5249
DOI: https://doi.org/10.1023/B:JOTH.0000047350.22539.ef
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: S. Yu. Dobrokhotov, E. S. Semenov, B. Tirozzi, “Hugoniót–Maslov Chains for Singular Vortical Solutions to Quasilinear Hyperbolic Systems and Typhoon Trajectory”, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 2, CMFD, 2, MAI, M., 2003, 5–44; Journal of Mathematical Sciences, 124:5 (2004), 5209–5249
Citation in format AMSBIB
\Bibitem{DobSemTir03}
\by S.~Yu.~Dobrokhotov, E.~S.~Semenov, B.~Tirozzi
\paper Hugoni\'ot--Maslov Chains for Singular Vortical Solutions to Quasilinear Hyperbolic Systems and Typhoon Trajectory
\inbook Proceedings of the International Conference on Differential and Functional-Differential Equations --- Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11--17 August, 2002). Part~2
\serial CMFD
\yr 2003
\vol 2
\pages 5--44
\publ MAI
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd19}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2129133}
\zmath{https://zbmath.org/?q=an:1069.37049}
\transl
\jour Journal of Mathematical Sciences
\yr 2004
\vol 124
\issue 5
\pages 5209--5249
\crossref{https://doi.org/10.1023/B:JOTH.0000047350.22539.ef}
Linking options:
  • https://www.mathnet.ru/eng/cmfd19
  • https://www.mathnet.ru/eng/cmfd/v2/p5
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:547
    Full-text PDF :148
    References:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024