Abstract:
In this paper, we provide explicitly the connection between the hypoelliptic heat kernel for some 3-step sub-Riemannian manifolds and the quartic oscillator. We study the left-invariant sub-Riemannian structure on two nilpotent Lie groups, namely, the (2,3,4) group (called the Engel group) and the (2,3,5) group (called the Cartan group or the generalized Dido problem). Our main technique is noncommutative Fourier analysis, which permits us to transform the hypoelliptic heat equation into a one-dimensional heat equation with a quartic potential.
Citation:
U. Boscain, J.-P. Gauthier, F. Rossi, “Hypoelliptic heat kernel over 3-step nilpotent Lie groups”, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), CMFD, 42, PFUR, M., 2011, 48–61; Journal of Mathematical Sciences, 199:6 (2014), 614–628
\Bibitem{BosGauRos11}
\by U.~Boscain, J.-P.~Gauthier, F.~Rossi
\paper Hypoelliptic heat kernel over $3$-step nilpotent Lie groups
\inbook Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3--7, 2009)
\serial CMFD
\yr 2011
\vol 42
\pages 48--61
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd189}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3013827}
\transl
\jour Journal of Mathematical Sciences
\yr 2014
\vol 199
\issue 6
\pages 614--628
\crossref{https://doi.org/10.1007/s10958-014-1889-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902766595}
Linking options:
https://www.mathnet.ru/eng/cmfd189
https://www.mathnet.ru/eng/cmfd/v42/p48
This publication is cited in the following 9 articles: