Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2011, Volume 42, Pages 48–61 (Mi cmfd189)  

This article is cited in 8 scientific papers (total in 8 papers)

Hypoelliptic heat kernel over $3$-step nilpotent Lie groups

U. Boscaina, J.-P. Gauthierb, F. Rossic

a CMAP, École Polytechnique CNRS, Route de Saclay, 91128 Palaiseau Cedex, France
b Laboratoire LSIS, Université de Toulon, France
c Laboratoire LSIS, Université Paul Cézanne, Marseille, France
Full-text PDF (218 kB) Citations (8)
References:
Abstract: In this paper, we provide explicitly the connection between the hypoelliptic heat kernel for some $3$-step sub-Riemannian manifolds and the quartic oscillator. We study the left-invariant sub-Riemannian structure on two nilpotent Lie groups, namely, the (2,3,4) group (called the Engel group) and the (2,3,5) group (called the Cartan group or the generalized Dido problem). Our main technique is noncommutative Fourier analysis, which permits us to transform the hypoelliptic heat equation into a one-dimensional heat equation with a quartic potential.
English version:
Journal of Mathematical Sciences, 2014, Volume 199, Issue 6, Pages 614–628
DOI: https://doi.org/10.1007/s10958-014-1889-9
Bibliographic databases:
Document Type: Article
UDC: 517.938
Language: Russian
Citation: U. Boscain, J.-P. Gauthier, F. Rossi, “Hypoelliptic heat kernel over $3$-step nilpotent Lie groups”, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), CMFD, 42, PFUR, M., 2011, 48–61; Journal of Mathematical Sciences, 199:6 (2014), 614–628
Citation in format AMSBIB
\Bibitem{BosGauRos11}
\by U.~Boscain, J.-P.~Gauthier, F.~Rossi
\paper Hypoelliptic heat kernel over $3$-step nilpotent Lie groups
\inbook Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3--7, 2009)
\serial CMFD
\yr 2011
\vol 42
\pages 48--61
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd189}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3013827}
\transl
\jour Journal of Mathematical Sciences
\yr 2014
\vol 199
\issue 6
\pages 614--628
\crossref{https://doi.org/10.1007/s10958-014-1889-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902766595}
Linking options:
  • https://www.mathnet.ru/eng/cmfd189
  • https://www.mathnet.ru/eng/cmfd/v42/p48
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024