Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2011, Volume 39, Pages 173–184 (Mi cmfd180)  

This article is cited in 4 scientific papers (total in 4 papers)

Averaging of boundary-value problems for the Laplace operator in perforated domains with a nonlinear boundary condition of the third type on the boundary of cavities

M. N. Zubovaa, T. A. Shaposhnikovab

a Moscow
b Moscow State University, Moscow, Russia
Full-text PDF (163 kB) Citations (4)
References:
Abstract: In this paper, the asymptotic behavior of solutions $u_\varepsilon$ of the Poisson equation in the $\varepsilon$-periodically perforated domain $\Omega_\varepsilon\subset\mathbb R^n$, $n\ge3$, with the third nonlinear boundary condition of the form $\partial_\nu u_\varepsilon+\varepsilon^{-\gamma}\sigma(x,u_\varepsilon)=\varepsilon^{-\gamma}g(x)$ on a boundary of cavities, is studied. It is supposed that the diameter of cavities has the order $\varepsilon^\alpha$ with $\alpha>1$ and any $\gamma$. Here, all types of asymptotic behavior of solutions $u_\varepsilon$, corresponding to different relations between parameters $\alpha$ and $\gamma$, are studied.
English version:
Journal of Mathematical Sciences, 2013, Volume 190, Issue 1, Pages 181–193
DOI: https://doi.org/10.1007/s10958-013-1253-5
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: M. N. Zubova, T. A. Shaposhnikova, “Averaging of boundary-value problems for the Laplace operator in perforated domains with a nonlinear boundary condition of the third type on the boundary of cavities”, Partial differential equations, CMFD, 39, PFUR, M., 2011, 173–184; Journal of Mathematical Sciences, 190:1 (2013), 181–193
Citation in format AMSBIB
\Bibitem{ZubSha11}
\by M.~N.~Zubova, T.~A.~Shaposhnikova
\paper Averaging of boundary-value problems for the Laplace operator in perforated domains with a~nonlinear boundary condition of the third type on the boundary of cavities
\inbook Partial differential equations
\serial CMFD
\yr 2011
\vol 39
\pages 173--184
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd180}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2830684}
\transl
\jour Journal of Mathematical Sciences
\yr 2013
\vol 190
\issue 1
\pages 181--193
\crossref{https://doi.org/10.1007/s10958-013-1253-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874950023}
Linking options:
  • https://www.mathnet.ru/eng/cmfd180
  • https://www.mathnet.ru/eng/cmfd/v39/p173
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:540
    Full-text PDF :174
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024