Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2010, Volume 36, Pages 72–86 (Mi cmfd157)  

This article is cited in 1 scientific paper (total in 1 paper)

A quasilinear method in the theory of small eigenfunctions for nonlinear periodic boundary-value problems

Ya. M. Dymarskiia, D. N. Nepiypab

a Lugansk State University of Internal Affairas
b Luhansk National University
Full-text PDF (203 kB) Citations (1)
References:
Abstract: Small eigenfunctions of a nonlinear periodic boundary-value problem are studied for the case of double degeneration of the eigenvalue of the linearized problem; the quasilinear representation is used.
English version:
Journal of Mathematical Sciences, 2010, Volume 171, Issue 1, Pages 58–73
DOI: https://doi.org/10.1007/s10958-010-0126-4
Bibliographic databases:
Document Type: Article
UDC: 517.988.57+517.984.46
Language: Russian
Citation: Ya. M. Dymarskii, D. N. Nepiypa, “A quasilinear method in the theory of small eigenfunctions for nonlinear periodic boundary-value problems”, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, CMFD, 36, PFUR, M., 2010, 72–86; Journal of Mathematical Sciences, 171:1 (2010), 58–73
Citation in format AMSBIB
\Bibitem{DymNep10}
\by Ya.~M.~Dymarskii, D.~N.~Nepiypa
\paper A quasilinear method in the theory of small eigenfunctions for nonlinear periodic boundary-value problems
\inbook Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17--24, 2008). Part~2
\serial CMFD
\yr 2010
\vol 36
\pages 72--86
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd157}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2752651}
\transl
\jour Journal of Mathematical Sciences
\yr 2010
\vol 171
\issue 1
\pages 58--73
\crossref{https://doi.org/10.1007/s10958-010-0126-4}
Linking options:
  • https://www.mathnet.ru/eng/cmfd157
  • https://www.mathnet.ru/eng/cmfd/v36/p72
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024