Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2010, Volume 36, Pages 36–49 (Mi cmfd154)  

This article is cited in 22 scientific papers (total in 22 papers)

Boundary-value problems for the Helmholtz equation and their discrete mathematical models

Yu. V. Gandel'

V. N. Karazin Kharkiv National University, Khar'kov, Ukraine
References:
Abstract: We consider boundary-value problems of mathematical diffraction theory and discuss the possibility of reducing them to boundary hypersingular integral equations and solving them numerically. The analytic technique of parametric representations of pseudodifferential and integral operators and the numerical method of discrete singularities are essentially used. We discuss the reasoning in applying this approach to constructing mathematical models of wave diffraction problems and solving them numerically.
English version:
Journal of Mathematical Sciences, 2010, Volume 171, Issue 1, Pages 74–88
DOI: https://doi.org/10.1007/s10958-010-0127-3
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. V. Gandel', “Boundary-value problems for the Helmholtz equation and their discrete mathematical models”, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, CMFD, 36, PFUR, M., 2010, 36–49; Journal of Mathematical Sciences, 171:1 (2010), 74–88
Citation in format AMSBIB
\Bibitem{Gan10}
\by Yu.~V.~Gandel'
\paper Boundary-value problems for the Helmholtz equation and their discrete mathematical models
\inbook Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17--24, 2008). Part~2
\serial CMFD
\yr 2010
\vol 36
\pages 36--49
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd154}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2752648}
\transl
\jour Journal of Mathematical Sciences
\yr 2010
\vol 171
\issue 1
\pages 74--88
\crossref{https://doi.org/10.1007/s10958-010-0127-3}
Linking options:
  • https://www.mathnet.ru/eng/cmfd154
  • https://www.mathnet.ru/eng/cmfd/v36/p36
  • This publication is cited in the following 22 articles:
    1. Ludmila Illyashenko, 2023 IEEE XXVIII International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 2023, 37  crossref
    2. George Koshovy, Andrew Koshovy, Oksana Ahapova, “Investigation of Problems of Electromagnetic Wave Scattering by Conductive Strip Gratings Using Integral Equation Method”, Radioelectron.Commun.Syst., 66:9 (2023), 439  crossref
    3. Andrew G. Koshovy, GeorgeI. Koshovy, Oksana O. Ahapova, 2022 IEEE 2nd Ukrainian Microwave Week (UkrMW), 2022, 490  crossref
    4. Mstislav E. Kaliberda, Leonid M. Lytvynenko, Sergey A. Pogarsky, “Method of singular integral equations in scattering by double-layer infinite strip grating with several strips removed in every layer”, Journal of Electromagnetic Waves and Applications, 35:11 (2021), 1433  crossref
    5. Mstislav E. Kaliberda, Leonid M. Lytvynenko, Sergey A. Pogarsky, “Scattering of eigenmodes of planar dielectric waveguide with PEC wall by graphene strip grating at THz”, Waves in Random and Complex Media, 2021, 1  crossref
    6. V. D. Dushkin, V. N. Melnik, “MATHEMATICAL MODEL OF WAVE DIFFRACTION BY THE SYSTEM OF STRIPES WITH DIFFERENT VALUES OF SURFACE IMPEDANCE”, JNAM, 2021, no. 1 (135), 131  crossref
    7. M. E. Kaliberda, L. M. Lytvynenko, S. A. Pogarsky, “OPERATOR METHOD IN THE PROBLEM OF AN H-POLARIZED PLANE WAVE DIFFRACTION BY A DOUBLE-LAYER INFINITE PERIODIC STRIP GRATING IN THE ABSENCE OF ONE STRIP IN EVERY LAYER”, Radio phys. radio astron., 25:2 (2020), 136  crossref
    8. Vladimir D. Dushkin, Stanislav V. Zhuchenko, Oleksii V. Kostenko, 2020 IEEE Ukrainian Microwave Week (UkrMW), 2020, 625  crossref
    9. “Discrete mathematical model of the scattering process of E-polarized wave on a periodic impedance grating”, MAMM, 2019, no. 90  crossref
    10. Mstislav E. Kaliberda, Leonid M. Lytvynenko, Sergey A. Pogarsky, “Electromagnetic interaction of two semi-infinite coplanar gratings of flat PEC strips with arbitrary gap between them”, Journal of Electromagnetic Waves and Applications, 33:12 (2019), 1557  crossref
    11. Mstislav E. Kaliberda, Leonid M. Lytvynenko, Sergey A. Pogarsky, “Singular integral equations in diffraction problem by an infinite periodic strip grating with one strip removed: E–polarization case”, Journal of Electromagnetic Waves and Applications, 32:3 (2018), 332  crossref
    12. Mstislav E. Kaliberda, Leonid M. Lytvynenko, Sergey A. Pogarsky, “Modeling of Graphene Planar Grating in the THz Range by the Method of Singular Integral Equations”, Frequenz, 72:5-6 (2018), 277  crossref
    13. Khalilov E.H., “Substantiation of the Collocation Method For One Class of Systems of Integral Equations”, Ukr. Math. J., 69:6 (2017), 955–969  crossref  mathscinet  isi  scopus
    14. Mstislav E. Kaliberda, Sergey A. Pogarsky, Leonid M. Lytvynenko, 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), 2017, 84  crossref
    15. M. E. Kaliberda, L. M. Lytvynenko, S. A. Pogarsky, “THE E-POLARIZED WAVE DIFFRACTION BY INFINITE PERIODICAL STRIP GRATING WITHOUT SINGLE STRIP”, Radio phys. radio astron., 21:3 (2016), 189  crossref
    16. Mstislav E. Kaliberda, Leonid M. Lytvynenko, Sergey A. Pogarsky, “Singular integral equations in diffraction problem by an infinite periodic strip grating with one strip removed”, Journal of Electromagnetic Waves and Applications, 30:18 (2016), 2411  crossref
    17. Yu. V. Gandel', V. D. Dushkin, “Mathematical Model of Scattering of Polarized Waves on Impedance Strips Located on a Screened Dielectric Layer”, J Math Sci, 212:2 (2016), 156  crossref
    18. Sergiy Steshenko, Maxim Zhadobov, Ronan Sauleau, Anatoliy A. Kirilenko, Artem V. Boriskin, “Beam-Forming Capabilities of Waveguide Feeds Assisted by Corrugated Flanges”, IEEE Trans. Antennas Propagat., 63:12 (2015), 5548  crossref
    19. Kateryna Nesvit, The 8th European Conference on Antennas and Propagation (EuCAP 2014), 2014, 2773  crossref
    20. Kateryna V. Nesvit, 2012 Proceedings of the International Conference Days on Diffraction, 2012, 183  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:605
    Full-text PDF :467
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025