Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2010, Volume 36, Pages 5–11 (Mi cmfd151)  

This article is cited in 2 scientific papers (total in 2 papers)

Extinction of solutions for some nonlinear parabolic equations

Y. Belaud

Faculté des Sciences et Techniques, Université François Rabelais, Tours, France
Full-text PDF (142 kB) Citations (2)
References:
Abstract: We are dealing with the first vanishing time for solutions of the Cauchy–Neumann problem for the semilinear parabolic equation $\partial_t u-\Delta u+a(x)u^q=0$, where $a(x)\ge d_0\exp(-\omega(|x|)/|x|^2)$, $d_0>0$, $1>q>0$, and $\omega$ is a positive continuous radial function. We give a Dini-like condition on the function $\omega$ which implies that any solution of the above equation vanishes in finite time. The proof is derived from semi-classical limits of some Schrödinger operators.
English version:
Journal of Mathematical Sciences, 2010, Volume 171, Issue 1, Pages 1–8
DOI: https://doi.org/10.1007/s10958-010-0121-9
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: Y. Belaud, “Extinction of solutions for some nonlinear parabolic equations”, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, CMFD, 36, PFUR, M., 2010, 5–11; Journal of Mathematical Sciences, 171:1 (2010), 1–8
Citation in format AMSBIB
\Bibitem{Bel10}
\by Y.~Belaud
\paper Extinction of solutions for some nonlinear parabolic equations
\inbook Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17--24, 2008). Part~2
\serial CMFD
\yr 2010
\vol 36
\pages 5--11
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd151}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2752645}
\transl
\jour Journal of Mathematical Sciences
\yr 2010
\vol 171
\issue 1
\pages 1--8
\crossref{https://doi.org/10.1007/s10958-010-0121-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000272756700001}
Linking options:
  • https://www.mathnet.ru/eng/cmfd151
  • https://www.mathnet.ru/eng/cmfd/v36/p5
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024