|
Contemporary Mathematics. Fundamental Directions, 2010, Volume 35, Pages 118–125
(Mi cmfd149)
|
|
|
|
Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term
H. A. Hamid, M. F. Bidaut-Veron Laboratoire de Mathématiques et Physique Théorique, CNRS UMR 6083, Facultédes Sciences, Tours, France
Abstract:
We give existence, nonexistence and multiplicity results of nonnegative solutions for Dirichlet problems of the form $$
-\Delta_pv=\lambda f(x)(1+g(v))^{p-1}\quad\text{in}\quad\Omega,\qquad u=0\quad\text{on}\quad\partial\Omega,
$$
where $\Delta_p$ is the $p$-Laplacian $(p>1)$, $g$ is nondecreasing, superlinear, and possibly convex, $\lambda>0$ and $f\in L^1(\Omega)$, $f\ge0$. New information on the extremal solutions is given. Equations with measure data are also considered.
Citation:
H. A. Hamid, M. F. Bidaut-Veron, “Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term”, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, CMFD, 35, PFUR, M., 2010, 118–125; Journal of Mathematical Sciences, 170:3 (2010), 324–331
Linking options:
https://www.mathnet.ru/eng/cmfd149 https://www.mathnet.ru/eng/cmfd/v35/p118
|
Statistics & downloads: |
Abstract page: | 206 | Full-text PDF : | 62 | References: | 46 |
|