Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2010, Volume 35, Pages 118–125 (Mi cmfd149)  

Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term

H. A. Hamid, M. F. Bidaut-Veron

Laboratoire de Mathématiques et Physique Théorique, CNRS UMR 6083, Facultédes Sciences, Tours, France
References:
Abstract: We give existence, nonexistence and multiplicity results of nonnegative solutions for Dirichlet problems of the form
$$ -\Delta_pv=\lambda f(x)(1+g(v))^{p-1}\quad\text{in}\quad\Omega,\qquad u=0\quad\text{on}\quad\partial\Omega, $$
where $\Delta_p$ is the $p$-Laplacian $(p>1)$, $g$ is nondecreasing, superlinear, and possibly convex, $\lambda>0$ and $f\in L^1(\Omega)$, $f\ge0$. New information on the extremal solutions is given. Equations with measure data are also considered.
English version:
Journal of Mathematical Sciences, 2010, Volume 170, Issue 3, Pages 324–331
DOI: https://doi.org/10.1007/s10958-010-0088-6
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: H. A. Hamid, M. F. Bidaut-Veron, “Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term”, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, CMFD, 35, PFUR, M., 2010, 118–125; Journal of Mathematical Sciences, 170:3 (2010), 324–331
Citation in format AMSBIB
\Bibitem{HamBid10}
\by H.~A.~Hamid, M.~F.~Bidaut-Veron
\paper Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term
\inbook Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17--24, 2008). Part~1
\serial CMFD
\yr 2010
\vol 35
\pages 118--125
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd149}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2752643}
\transl
\jour Journal of Mathematical Sciences
\yr 2010
\vol 170
\issue 3
\pages 324--331
\crossref{https://doi.org/10.1007/s10958-010-0088-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957747733}
Linking options:
  • https://www.mathnet.ru/eng/cmfd149
  • https://www.mathnet.ru/eng/cmfd/v35/p118
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:206
    Full-text PDF :62
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024